DOI QR코드

DOI QR Code

Visual Exploration based Approach for Extracting the Interesting Association Rules

유용한 연관 규칙 추출을 위한 시각적 탐색 기반 접근법

  • Kim, Jun-Woo (Dept. of Industrial and Management Systems Engineering, Dong-A University) ;
  • Kang, Hyun-Kyung (Division of Dental Hygiene, Silla University)
  • 김준우 (동아대학교 산업경영공학과) ;
  • 강현경 (신라대학교 치위생학과)
  • Received : 2013.07.05
  • Accepted : 2013.08.02
  • Published : 2013.09.30

Abstract

Association rule mining is a popular data mining technique with a wide range of application domains, and aims to extract the cause-and-effect relations between the discrete items included in transaction data. However, analysts sometimes have trouble in interpreting and using the plethora of association rules extracted from a large amount of data. To address this problem, this paper aims to propose a novel approach called HTM for extracting the interesting association rules from given transaction data. The HTM approach consists of three main steps, hierarchical clustering, table-view, and mosaic plot, and each step provides the analysts with appropriate visual representation. For illustration, we applied our approach for analyzing the mass health examination data, and the result of this experiment reveals that the HTM approach help the analysts to find the interesting association rules in more effective way.

연관 규칙 탐사는 다양한 분야에서 널리 쓰이는 데이터 마이닝 기법으로 트랜잭션 데이터에 포함된 이산적인 항목들 간의 인과관계를 추출하는데 목적을 둔다. 하지만 분석자들은 때로 방대한 양의 데이터에서 추출된 많은 연관규칙들을 해석하고 활용하는데 곤란을 겪기도 한다. 이러한 문제점을 해결하기 위하여 본 논문에서는 주어진 트랜잭션 데이터에서 유용한연관 규칙을 탐색하기 위한 새로운 방법인 HTM 접근법을 제안하고자 한다. HTM 접근법은 크게 계층 군집, 테이블 뷰 및 모자이크 플롯의 세 가지 단계로 구성되며, 각 단계는 분석자들에게 적절한 시각적 표현을 제공한다. 예시를 위해 본 논문에서는 상기 접근법을 건강 검진 결과 데이터 분석에 적용하였으며, 실험결과 HTM 접근법을 통해 분석자들은 유용한 규칙들을 보다 효과적으로 탐색할 수 있을 것으로 기대된다.

Keywords

References

  1. R. Agrawal, T. Imielinski, and R. Swami, "Mining Associations between Sets of Items in Massive Databases," Proceedings of the ACM-SIGMOD 1993 International Conference on Management of Data, pp. 207-216, 1993.
  2. R. Agrawal, and R. Srikant, "Fast Algorithms for Mining Association Rules," Proceedings of the International Conference on Very Large Databases, pp. 125-131, 1994.
  3. P.-N. Tan, M. Steinbach, and V. Kumar, "Introduction to Data Mining," Addison-Wesley, 2005.
  4. A. Jorge, "Hierarchical Clustering for Thematic Browsing and Summarization of Large Sets of Association Rules," Proceedings of the 2004 SIAM International Conference on Data Mining, 2004.
  5. L. A. Fernandes, and A. C. B. Garcia, "Association Rule Visualization and Pruning through Response-Style Data Organization and Clustering," In Advances in Artificial Intelligence-IBERAMIA, pp. 71-80, 2012
  6. Y. A. Sekhavat, and O. Hoeber, "Visualizing Association Rules Using Linked Matrix, Graph, and Detail Views," International Journal of Intelligence Science, Vol. 3, pp. 34-49, 2013. https://doi.org/10.4236/ijis.2013.31A005
  7. B. Schneiderman, "The Eyes Have It: A Task by Data Type Taxonomy for Information Visualization," Proceedings of the IEEE Symposium on Visual Languages, pp. 336-343, 1996.
  8. M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. I. Verkamo, "Finding Interesting Rules from Large Sets of Discovered Association Rules," Proceedings of the 3rd International Conference on Information and Knowledge Management, pp. 401-407, 1994.
  9. P. C. Wong, P. Whitney, and J. Thomas, "Visualizing Association Rules for Text Mining," Proceedings of the 1999 IEEE Symposium on Information Visualization, pp. 120-123, 1999.
  10. C. Romero, J. M. Luna, J. R. Romero, and S. Ventura, "RM-Tool: A Framework for Discovering and Evaluating Association Rules," Advances in Engineering Software, Vol. 42, No. 8, pp. 566-576, 2011. https://doi.org/10.1016/j.advengsoft.2011.04.005
  11. R. J. Bayardo, and R. Agrawal, "Mining the Most Interesting Rules," Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 145-154, 1999.
  12. M. Hahsler, and S. Chellubonia, "Visualizing Association Rules: Introduction to the R-extension Package arulesViz,", R project module, 2011.
  13. K. Techapichetvanich, and A. Datta, "VisAR: A New Technique for Visualizing Mined Association Rules," In Advanced Data Mining and Applications, Springer Berlin Heidelberg, pp. 88-95, 2005.
  14. Y. H. Fua, M. O. Ward, and E. A. Rundensteiner, "Hierarchical Parallel Coordinates for Exploration of Large Datasets," Proceedings of the Conference on Visualization '99, pp. 43-50, 1999.
  15. P. Buono, and M. F. Costabile, "Visualizing Association Rules in a Framework for Visual Data Mining," In Integrated Publication and Information Systems to Information and Knowledge Environments, Springer Berlin Heidelberg, pp. 221-231, 2005.
  16. L. Yang, "Pruning and Visualizing Generalized Association Rules in Parallel Coordinates," IEEE Transactions on Knowledge and Data Engineering, Vol. 17, No. 1, pp. 60-70, 2005. https://doi.org/10.1109/TKDE.2005.14
  17. L. Yang, "Visual Exploration of Frequent Itemsets and Association Rules," In Visual Data Mining: Theory, Techniques and Tools for Visual Analytics, Springer Berlin Heidelberg, pp. 60-75, 2008.
  18. M. Hahsler, and S. Chellubonia, "Visualizing Association Rules in Hierarchical Groups," Proceedings of the 42nd Symposium on the Interface: Statistical, Machine Learning, and Visualization Algorithms, 2011.
  19. K. H. Ong, K. L. Ong, W. K. Ng, and E. P. Lim, "Crystalclear: Active Visualization of Association Rules," Proceedings of the ICDM-02 Workshop on Active Mining, 2002.
  20. O. Couturier, T. Hamrouni, S. B. Yahia, and E. M. Nguifo, "A Scalable Association Rule Visualization towards Displaying Large Amounts of Knowledge," Proceedings of 11th International Conference on Information Visualization IV, Vol. 7, pp. 657-663, 2007.
  21. W. H. E. Day, and H. Edelsbrunner, "Efficient Algorithms for Agglomerative Hierarchical Clustering Method," Journal of Classification, Vol. 1, No. 1, pp. 7-24, 1984 https://doi.org/10.1007/BF01890115
  22. A. Guenoche, P. Hansen, and B. Jaumard, "Efficient Algorithms for Divisive Hierarchical Clustering," Journal of Classification, Vol. 8, No. 1, pp. 5-30, 1991. https://doi.org/10.1007/BF02616245
  23. B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, "Item-based Collaborative Filtering Recommendation Algorithms," Proceedings of the 10th International Conference on World Wide Web, pp. 285-295, 2001.
  24. C.-J. Tsui, P. Wang, K. R. Fleischmann, A. B. Sayeed, and A. Weinberg, "Building an IT Taxonomy with Co-occurrence Analysis, Hierarchical Clustering and Multidimensional Scaling," Proceedings of iConference, pp. 247-256, 2010.
  25. H. Hofmann, A. P. Siebes, and A. F. Wilhelm, "Visualizing Association Rules with Interactive Mosaic Plots," Proceedings of the ACMKDD International Conference on Knowledge Discovery and Data Mining, pp. 227-235, 2000.
  26. A. Strehl, G. K. Gupta, and J. Ghosh, "Distance Based Clustering of Association Rules," Proceedings of ANNIE 1999, ASME Press, pp. 759-764, 1999.