DOI QR코드

DOI QR Code

Probiotics with Antimicrobial Activity against Multidrug Resistant Pseudomonas aeruginosa and Acinetobacter baumannii

다제내성 녹농균과 아시네토박터 바우마니에 항균활성을 가지는 프로바이오틱스

  • Received : 2013.07.26
  • Accepted : 2013.08.16
  • Published : 2013.09.30

Abstract

Pseudomonas aeruginosa and Acinetobacter baumannii are significant opportunistic pathogens in hospitals and are resistant to most antibiotics. Multidrug-resistant P. aeruginosa (MDRPA) and A. baumannii (MDRAB) cause severe human nosocomial infections and are more difficult to treat than methicillin-resistant Staphylococcus aureus (MRSA). Bifidobacteria are among of the most beneficial probiotics and have been widely studied for their antimicrobial activities. The present study explored the antimicrobial activity of Bifidobacterium sp. isolated from healthy Koreans against MDRPA and MDRAB. The antimicrobial activity of the isolates against MDRPA and MDRAB, which are resistant to ciprofloxacin, tobramycin, gentamicin, meropenem, and ceftazidime, was determined by modified broth microdilution methods using absorbance. Among all tested bifidobacteria isolates (nine B. adolescentis, three B. longum, and two B. pseudocatenulatum), the culture supernatant of B. pseudocatenulatum SPM1309 showed a strong growth inhibitory effect against MDRPA and MDRAB. No change in the turbidity of the mixture was observed during incubation, and its inhibitory effect occurred through bacteriostastic action. Moreover, the antibacterial activity was observed in the fraction with molecular weights <10 kDa of bifidobacteria culture supernatant, and the active fraction was heat-stable because it maintained its activity when heated at $70^{\circ}C$ for 10 min. The results suggest that this Bifidobacterium strain could have potential applications for alternative therapy in MDRPA and MDRAB infections.

녹농균과 아시네토박터 바우마니는 병원에서 중요한 기회감염 균주이며 대부분의 항생제에 내성이다. 다제내성 녹농균(MDRPA)과 아시네토박터 바우마니(MDRAB)는 심각한 원내 감염을 일으키고 메티실린 내성 황색포도상구균(MRSA) 보다 치료가 어렵다. 비피도박테리아는 많은 유익한 프로바이틱스 중 하나로 그들의 항균활성에 대한 많은 연구가 이루어져 왔다. 본 연구에서는 한국인으로부터 분리한 비피도박테리움 속 균주들의 MDRPA와 MDRAB에 대한 항균활성을 조사하였다. 시프로플록사신, 토브라마이신, 겐타마이신, 메로페넴과 세프타지딤에 내성을 보이는 MDRPA와 MDRAB에 대한 비피도박테리움 속 균주들의 항균활성은 흡광도를 이용한 액체배지희석법에 의해 측정되었다. 모든 비피도박테리아 분리균주(비피도박테리움 어돌레센티스 9균주, 비피도박테리움 롱검 3균주와 비피도박테리움 슈도카테눌라툼 2균주) 중 비피도박테리움 슈도카테눌라툼 SPM1309의 배양 상등액은 MDRPA와 MDRAB에 대한 강한 증식 억제 효과를 보여주었다. 배양 시간 동안 혼합액의 탁도는 변화되지 않았으며, 이 억제 효과는 정균 작용이었다. 게다가 항균활성은 분자량 10 kDa 미만의 분획물에서 나타났으며, $70^{\circ}C$에서 10분간 열처리 한 후에서 항균활성이 유지되었기 때문에 활성물질은 열에 안정하였다. 본 연구결과는 MDRPA와 MDRAB 감염증의 대체치료법을 위한 비피도박테리움 슈토카테눌라툼 SPM1309의 잠재적인 가능성을 보여준다.

Keywords

References

  1. Ahn, J.B. 2005. Isolation and characterization of Bifidobacterium producing exopolysaccharide. Food Eng. Prog. 9, 291-296.
  2. Anand, S.K., Srinivasan, R.A., and Rao, L.K. 1985. Antimicrobial activity associated with Bifidobacterium bifidum-II. Cult. Dairy Products J. 20, 21-23.
  3. Ballongue, J. 1998. Bifidobacteria and probiotic action. pp. 519-587. In Salminen, S. and Von Wright, A. (eds.), Lactic Acid Bacteria: Microbiology and Functional Aspects. Marcel Dekker, New York, USA.
  4. Bassetti, M., Righi, E., Esposito, S., Petrosillo, N., and Nicolini, L. 2008. Drug treatment for multidrug-resistant Acinetobacter baumannii infections. Future Microbiol. 3, 649–660. https://doi.org/10.2217/17460913.3.6.649
  5. Cheikhyoussef, A., Pogori, N., Chen, W., and Zhang, H. 2008. Antimicrobial proteinaceous compounds obtained from bifidobacteria: From production to their application. Int. J. Food Microbiol. 125, 215-222. https://doi.org/10.1016/j.ijfoodmicro.2008.03.012
  6. Chevalier, P., Roy, D., and Ward, D. 1990. Detection of Bifidobacterium species by enzymatic methods. J. Appl. Bacteriol. 68, 619-624. https://doi.org/10.1111/j.1365-2672.1990.tb05227.x
  7. Clinical and Laboratory Standards Institute (CLSI). 2012. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved standard, 9th ed. CLSI document M07-A79, CLSI, Wayne, PA, USA.
  8. De Vuyst, L., Avonts, L., and Makras, L. 2004. Probiotics, prebiotics and gut health. pp. 416-482. In Remacle, C. and Reusens, B. (eds.), Functional Foods, Ageing and Degenerative Disease. Woodhead Publishing, Cambridge, UK.
  9. Deplano, A., Denis, O., Poirel, L., Hocquet, D., nonhoff, C., Byl, B., Nordmann, P., Vincent, J.L., and Struelens, M.J. 2005. Molecular characterization of an epidemic clone of panantibiotic-resistant Pseudomonas aeruginosa. J. Clin. Microbiol. 43, 1198-1204. https://doi.org/10.1128/JCM.43.3.1198-1204.2005
  10. Falagas, M.E., Bliziotis, I.A., Kasiakou, S., Samonis, G., Athanassopoulou, P., and Michalopoulos, A. 2005. Outcome of infections due to pandrug-resistant (PDR) Gram-negative bacteria. BMC Infect. Dis. 5, 24 doi:10.1186/1471-2334-5-24.
  11. Falagas, M.E. and Kopterides, P. 2006. Risk factors for the isolation of multi-drug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa: a systematic review of the literature. J. Hosp. Infect. 64, 7-15. https://doi.org/10.1016/j.jhin.2006.04.015
  12. Fuller, R. 1989. Probiotics in man and animals. J. Appl. Bacteriol. 66, 365-378. https://doi.org/10.1111/j.1365-2672.1989.tb05105.x
  13. Gaynes, R. and Edwards, J.R. 2005. National nosocomial infections surveillance system. Overview of nosocomial infections caused by Gram-negative bacilli. Clin. Infect. Dis. 41, 848-854. https://doi.org/10.1086/432803
  14. Gibson, G.R. and Wang, X. 1994. Regulatory effects of bifidobacteria on the growth of other colonic bacteria. J. Appl. Bacteriol. 77, 412-420. https://doi.org/10.1111/j.1365-2672.1994.tb03443.x
  15. Gill, H.S. and Guarner, F. 2004. Probiotics and human health: a clinical perspective. Postgrad. Med. J. 80, 516-526. https://doi.org/10.1136/pgmj.2003.008664
  16. Gomes, A.M.P. and Malcata, F.X. 1999. Bifidobacterium spp. and Lactobacillus acidophilus: Biological, biochemical, technological and therapeutical properties relevant for use as probiotics. Trends Food Sci. Technol. 10, 139-157. https://doi.org/10.1016/S0924-2244(99)00033-3
  17. Guarner, F. and Malagelada, J.R. 2003. Gut flora in health and disease. Lancet 361, 512–519. https://doi.org/10.1016/S0140-6736(03)12489-0
  18. Gupta, V. and Garg, R. 2009. Probiotics. Indian J. Med. Microbiol. 27, 202-209. https://doi.org/10.4103/0255-0857.53201
  19. Hammes, W.P. and Tichaczek, P.S. 1994. The potential of lactic acid bacteria for the production of safe and wholesome food. Z. Lebensm. Unters. Forsch. 198, 193-201. https://doi.org/10.1007/BF01192595
  20. Hentges, D.J., Stein, A.J., Casey, S.W., and Que, J.U. 1985. Protective role of intestinal flora against infection with Pseudomonas aeruginosa in mice: influence of antibiotics on colonization resistance. Infect. Immun. 47, 118-122.
  21. Iannitti, T. and Palmieri, B. 2010. Therapeutical use of probiotic formulations in clinical practice. Clin. Nutr. 29, 701-725. https://doi.org/10.1016/j.clnu.2010.05.004
  22. Ibrahim, S.A. and Salameh, M.M. 2001. Simple and rapid method for screening antimicrobial activities of Bifidobacterium species of human isolates. J. Rapid Methods Autom. Microbiol. 9, 52-63.
  23. Kondepudi, K.K., Ambalam, P., Nilsson, I., Wadstrom, T., and Ljungh, A. 2012. Prebiotic-non-digestible oligosaccharides preference of probiotic bifidobacteria and antimicrobial activity against Clostridium difficile. Anaerobe 18, 489–497. https://doi.org/10.1016/j.anaerobe.2012.08.005
  24. Kuo, L.C., Teng, L.J., Yu, C.J., Ho, S.W., and Hsueh, P.R. 2004. Dissemination of a clone of unusual phenotype of pandrug-resistant Acinetobacter baumannii at a university hospital in Taiwan. J. Clin. Microbiol. 42, 1759-1763. https://doi.org/10.1128/JCM.42.4.1759-1763.2004
  25. Makras, L. and De Vuyst, L. 2006. The in vitro inhibition of Gram-negative pathogenic bacteria by bifidobacteria is caused by the production of organic acids. Int. Dairy J. 16, 1049-1057. https://doi.org/10.1016/j.idairyj.2005.09.006
  26. Marshall, J.C., Christou, N.V., and Meakins, J.L. 1993. The gastrointestinal tract. The "undrained abscess" of multiple organ failure. Ann. Surg. 218, 111-119. https://doi.org/10.1097/00000658-199308000-00001
  27. Marteau, P. and Shanahan, F. 2003. Basic aspects and pharmacology of probiotics: An overview of pharmacokinetics mechanisms of action and side-effects. Best Pract. Res. Clin. Gastroenterol. 17, 725-740. https://doi.org/10.1016/S1521-6918(03)00055-6
  28. Matsumoto, T., Ishikawa, H., Tateda, K., Yaeshima, T., Ishibashi, N., and Yamaguchi, K. 2007. Oral administration of Bifidobacterium longum prevents gut-derived Pseudomonas aeruginosa sepsis in mice. J. Appl. Microbiol. 104, 672-680.
  29. Navon-Venezia, S., Ben-Ami, R., and Carmeli, Y. 2005. Update on Pseudomonas aeruginosa and Acinetobacter baumannii infections in the healthcare setting. Curr. Opin. Infect. Dis. 18, 306-313. https://doi.org/10.1097/01.qco.0000171920.44809.f0
  30. Ohara, T. and Itoh, K. 2003. Significance of Pseudomonas aeruginosa colonization of the gastrointestinal tract. Int. Med. 42, 1072-1076. https://doi.org/10.2169/internalmedicine.42.1072
  31. O'Riordan, K. and Fitzgerald, G.F. 1998. Evaluation of bifidobacteria for the production of antimicrobial compounds and assessment of performance in cottage cheese at refrigeration temperature. J. Appl. Microbiol. 85, 103-114. https://doi.org/10.1046/j.1365-2672.1998.00474.x
  32. Parvez, S., Malik, K.A., Ah Kang, S., and Kim, H.Y. 2006. Probiotics and their fermented food products are beneficial for health. J. Appl. Microbiol. 100, 1171-1185. https://doi.org/10.1111/j.1365-2672.2006.02963.x
  33. Rodriguez, E., Arques, J.L., Rodriguez, R., Peiroten, A., Landete, J.M., and Medina, M. 2012. Antimicrobial properties of probiotic strains isolated from breast-fed infants. J. Funct. Foods 4, 542-551. https://doi.org/10.1016/j.jff.2012.02.015
  34. Servin, A.L. 2004. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol. 28, 405–440. https://doi.org/10.1016/j.femsre.2004.01.003
  35. Shah, P.M. 2005. The need for new therapeutic agents: what is the pipeline? Clin. Microbiol. Infect. 11, 36-42.
  36. Tissier, H. 1990. Ph. D. Thesis, University of Paris, Paris, France.
  37. Trottier, V., Segura, P.G., Namias, N., King, D., Pizano, L.R., and Schulman, C.I. 2007. Outcomes of Acinetobacter baumannii infection in critically I11 burned patients. J. Burn. Care Res. 28, 248-254. https://doi.org/10.1097/BCR.0B013E318031A20F
  38. Yildirim, Z. and Johnson, M.G. 1998. Characterization and antimicrobial spectrum of bifidocin B, a bacteriocin produced by Bifidobacterium bifidum NCFB 1454. J. Food Prot. 61, 47-51. https://doi.org/10.4315/0362-028X-61.1.47
  39. Yildirim, Z., Winters, D.K., and Johnson, M.G. 1999. Purification, amino acid sequence and mode of action of bifidocin B produced by Bifidobacterium bifidum NCFB 1454. J. Appl. Microbiol. 86, 45-54. https://doi.org/10.1046/j.1365-2672.1999.00629.x

Cited by

  1. Anti-inflammatory and Anti-bacterial Effects of Aloe vera MAP against Multidrug-resistant Bacteria vol.23, pp.4, 2017, https://doi.org/10.20307/nps.2017.23.4.286
  2. Antimicrobial Resistance: Its Surveillance, Impact, and Alternative Management Strategies in Dairy Animals vol.4, 2018, https://doi.org/10.3389/fvets.2017.00237