DOI QR코드

DOI QR Code

Comparison of Bacterial Diversity in the Water Columns of Goseong Deep Seawaters

고성 심해에서 수심에 따른 해양미생물의 다양성 비교

  • 강용호 (영남대학교 생명공학부)
  • Received : 2013.06.11
  • Accepted : 2013.07.18
  • Published : 2013.09.30

Abstract

Microbial diversities in the 300 m and 500 m deep seawaters near Goseong, Gangwon Province (South Korea), were investigated. Pyrosequencing of 16S rRNA genes of marine microbes resulted in 19,474 reads from the 300 m deep seawaters, which consisted of Alphaproteobacteria (57.41%) and Gammaproteobacteria (38.85%), and 82,806 reads from the 500 m deep seawaters, which consisted of Gammaproteobacteria (99.64%) mostly. Rhodobacterales (57.31%) were dominant in the 300 m deep seawaters, but Alteromonadales (45.65%) and Oceanospirillales (34.61%) were dominant in the 500 m deep seawaters. On the bases of operational taxonomic units and diversity indexes (Shannon and Simpson), biodiversity of marine bacteria in the 500 m deep seawaters was shown to be higher than that in the 300 m deep seawaters.

강원도 고성군 근해에서 수심 300 m와 500 m의 심층수에 서식하는 해양미생물 분포를 조사하였다. 심해미생물을 16S rRNA genes pyrosequencing 방법으로 분석한 결과 300 m 심층수 시료에서 얻은 19,474 reads에서 Alphaproteobacteria와 Gammaproteobacteria가 각각 57.41%와 38.85%의 분포 비율을 보였다. 심해 500 m의 시료에서 얻은 82,806 reads에서는 Gammaproteobacteria가 99.64%로 대부분을 차지하였다. 수심 300 m에서는 Rhodobacterales (57.31%)가 우점하였고, 수심 500 m에서는 Alteromonadales (45.65%)와 Oceanospirillales (34.61%)가 우점하였다. Operational Taxonomic Units와 diversity indexes (Shannon과 Simpson)를 기준으로 할 때 해양미생물의 다양성은 수심 500 m지역이 수심 300 m지역보다 더 높게 나타났다.

Keywords

References

  1. Dang, H., Li, T., Chen, M., and Huang, G. 2008. Cross-ocean distribution of Rhodobacterales bacteria as primary surface colonizers in temperate coastal marine waters. Appl. Environ. Microbiol.74, 52-60. https://doi.org/10.1128/AEM.01400-07
  2. Eloe, E.A., Fadrosh, D.W., Novotny, M., Zeigler Allen, L., Kim, M., Lombardo, M.J., Yee-Greenbaum, J., Yooseph, S., Allen, E.E., Lasken, R., and et al. 2011a. Going deeper: metagenome of a hadopelagic microbial community. PLoS One 6, e20388. https://doi.org/10.1371/journal.pone.0020388
  3. Eloe, E.A., Malfatti, F., Gutierrez, J., Hardy, K., Schmidt, W.E., Pogliano, K., Pogliano, J., Azam, F., and Bartlett, D.H. 2011b. Isolation and characterization of a psychropiezophilic alphaproteobacterium. Appl. Environ. Microbiol. 77, 8145-8153. https://doi.org/10.1128/AEM.05204-11
  4. Fu, Y., Keats, K.F., Rivkin, R.B., and Lang, A.S. 2013. Water mass and depth determine the distribution and diversity of Rhodobacterales in an Arctic marine system. FEMS Microbiol. Ecol. 84, 564-576. https://doi.org/10.1111/1574-6941.12085
  5. Hazen, T.C., Dubinsky, E.A., DeSantis, T.Z., Andersen, G.L., Piceno, Y.M., Singh, N., Jansson, J.K., Probst, A., Borglin, S.E., Fortney, J.L., and et al. 2010. Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330, 204-208. https://doi.org/10.1126/science.1195979
  6. Heidelberg, K.B., Gilbert, J.A., and Joint, I. 2010. Marine genomics: at the interface of marine microbial ecology and biodiversity. Microb. Biotechnol. 3, 531-543. https://doi.org/10.1111/j.1751-7915.2010.00193.x
  7. Huber, J.A., Mark Welch, D.B., Morrison, H.G., Huse, S.M., Neal, P.R., Butterfield, D.A., and Sogin, M.L. 2007. Microbial population structures in the deep marine biosphere. Science 318, 97–100. https://doi.org/10.1126/science.1146689
  8. Imhoff, J.F., Labes, A., and Wiese, J. 2011. Bio-mining the microbial treasures of the ocean: new natural products. Biotechnol. Adv. 29, 468-482. https://doi.org/10.1016/j.biotechadv.2011.03.001
  9. Joo, D.-S. 2011. Changes in quality of salted and dried brown-croaker product prepared with deep seawater salt. J. Kor. Soc. Food Sci. Nutr. 40, 235-244. https://doi.org/10.3746/jkfn.2011.40.2.235
  10. Katsuda, S., Yasukawa, T., Nakagawa, K., Miyake, M., Yamasaki, M., Katahira, K., Mohri, M., Shimizu, T., and Hazama, A. 2008. Deep-sea water improves cardiovascular hemodynamics in Kurosawa and Kusanagi-Hypercholesterolemic (KHC) rabbits. Biol. Pharm. Bull. 31, 38-44. https://doi.org/10.1248/bpb.31.38
  11. Kim, M.-K. and Khang, Y. 2012. Marine prokaryotic diversity of the deep sea waters at the depth of 1500 m off the coast of the Ulleung island in the East Sea (Korea). Kor. J. Microbiol. 48, 328-331. https://doi.org/10.7845/kjm.2012.056
  12. Kim, J.-H., Kim, G.T., Park, S.-H., Oh, W.-Y., and Kim, H.-J. 2012. A feasibility study on thermal energy resource in deep ocean water. J. Kor. Soc. Marine Environ. Eng. 15, 9-18. https://doi.org/10.7846/JKOSMEE.2012.15.1.009
  13. Kimes, N.E., Callaghan, A.V., Aktas, D.F., Smith, W.L., Sunner, J., Golding, B., Drozdowska, M., Hazen, T.C., Suflita, J.M., and Morris, P.J. 2013. Metagenomic analysis and metabolite profiling of deep-sea sediments from the Gulf of Mexico following the Deepwater Horizon oil spill. Front Microbiol. 4, 50.
  14. McGenity, T.J., Folwell, B.D., McKew, B.A., and Sanni, G.O. 2012. Marine crude-oil biodegradation: a central role for interspecies interactions. Aquat. Biosyst. 8, 10-18. https://doi.org/10.1186/2046-9063-8-10
  15. Miyamura, M., Yoshioka, S., Hamada, A., Takuma, D., Yokota, J., Kusunose, M., Kyotani, S., Kawakita, H., Odani, K., Tsutsui, Y., and et al. 2004. Difference between deep seawater and surface seawater in the preventive effect of atherosclerosis. Biol. Pharm. Bull. 27, 1784-1787. https://doi.org/10.1248/bpb.27.1784
  16. Rusch, D.B., Halpern, A.L., Sutton, G., Heidelberg, K.B., Williamson, S., Yooseph, S., Wu, D., Eisen, J.A., Hoffman, J.M., Remington, K., and et al. 2007. The sorcerer II global ocean sampling expedition: Northwest atlantic through eastern tropical pacific. PLoS Biol. 5,e77. https://doi.org/10.1371/journal.pbio.0050077
  17. Slightom, R.N. and Buchan, A. 2009. Surface colonization by marine Roseobacters: Integrating genotype and phenotype. Appl. Environ. Microbiol. 75, 6027-6037. https://doi.org/10.1128/AEM.01508-09
  18. Weber, M., Teeling, H., Huang, S., Waldmann, J., Kassabgy, M., Fuchs, B.M., Klindworth, A., Klockow, C., Wichels, A., Gerdts, G., and et al. 2010. Practical application of self-organizing maps to interrelate biodiversity and functional data in NGS-based metagenomics. ISME J. 5, 918–928.
  19. Zinger, L., Amaral-Zettler, L.A., Fuhrman, J.A., Horner-Devine, M.C., Huse, S.M., Welch, D.B., Martiny, J.B., Sogin, M., Boetius, A., and Ramette, A. 2011. Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS One 6, e24570. https://doi.org/10.1371/journal.pone.0024570

Cited by

  1. Comparison of Bacterial Communities in Beach Sands along the East Coast of North Gyeongsang Province vol.50, pp.4, 2014, https://doi.org/10.7845/kjm.2014.4067
  2. Characteristics of Psychrobacter spp. isolated from the Muscle of Toothfish (Dissostichus mawsoni) vol.30, pp.4, 2018, https://doi.org/10.13000/JFMSE.2018.08.30.4.1312