DOI QR코드

DOI QR Code

슬로싱 영향을 동반한 해양 부유체의 2자유도 거동 수치해석

Numerical analysis of 2-DOF motions of an ocean floater with sloshing effects

  • Kim, HyunJong (Interdisciplinary Program of Marine-Bio, Electrical & Mechanical Engineering, Pukyong National University) ;
  • Choi, Yoon-Hwan (Department of Mechanical & Automotive Engineering Pukyong National University) ;
  • Lee, Yeon-Won (Department of Mechanical & Automotive Engineering and Interdisciplinary Program of Marine-Bio, Electrical & Mechanical Engineering Pukyong National University)
  • 투고 : 2013.08.08
  • 심사 : 2013.09.11
  • 발행 : 2013.09.30

초록

해양 부유체 내부 유체는 파랑에 의한 외력을 받게 되면 슬로싱(sloshing)이 발생하게 된다. 부유체의 슬로싱에 의한 영향을 해석하기 위해서, 파랑에 의한 부유체의 거동뿐만 아니라 슬로싱에 의한 부유체의 응답을 고려한 결합적인 해석이 필요하다. 전산유체역학(CFD) 해석에 있어서, 외란은 비선형 파랑인 Stokes 5차 이론을 사용했고, 유동 해석은 Navier-Stokes 방정식과 Shear-Stress Transport(SST) 난류 모델을 이용하였다. 해양 부유체는 Pitch, Heave 운동에 대한 2자유도 해석을 진행 하였고, 결과에서는 슬로싱을 포함한 강체 운동을 확인 할 수 있다.

The sloshing of liquid inside an ocean floater is caused by disturbances due to waves. For the analysis of sloshing impact within the floater and that of waves on the floater, the coupled analysis method is used. The Stokes $5^{th}$ order non-linear wave theory equations were adapted for wave making. Furthermore, Navier-Stokes equation and Shear-Stress Transport (SST) turbulent model were used to Computational Fluid dynamics, where the ocean floater motions are considered the heave and the pitch motion. The results obtained confirms the mutual relationship between the rigid body motions and that of sloshing, where the sloshing behaviour within the floater is characterized by the wave effects on the floater.

키워드

참고문헌

  1. Y. Kim, B. W. Nam, D. W. Kim, and Y. S. Kim, "Study on coupling effects of ship motion and sloshing," Ocean Engineering, vol. 34, pp. 2176-2187, 2007. https://doi.org/10.1016/j.oceaneng.2007.03.008
  2. S. J. Lee, M. H. Kim, D. H. Lee, J. W. Kim, and Y. H. Kim, "The effects of LNG-tank sloshing on the global motions of LNG carriers," Ocean Engineering, vol. 34, pp. 10-20, 2007. https://doi.org/10.1016/j.oceaneng.2006.02.007
  3. S. Mitra, C. A. Wang, J. N. Reddy, and B. C. Khoo, "A 3D fully coupled analysis of nonlinear sloshing and ship motion," Ocean Engineering, vol. 39, pp. 1-13, 2012. https://doi.org/10.1016/j.oceaneng.2011.09.015
  4. C. H. Wu and B. F. Chen, "Sloshing waves and resonance modes of fluid in a 3D tank by a time-independent finite difference method," Ocean Engineering, vol. 36, pp. 500-510, 2009. https://doi.org/10.1016/j.oceaneng.2009.01.020
  5. F. R. Menter, M. Kuntz, and R. Langtry, "Ten years of industrial enperimence with the turbulence model," Turbulence, Heat and Mass Transfer 4, pp. 625-632, 2003.
  6. J. D. Anderson, Jr. Governing Equations of Fluid Dynamics, Computational fluid dynamics-An Introduction, J. F Wendt, Ed. heidelberg :Springer, 1995.
  7. K. M. Li, N. Parthasarathy, H. C. Yoon, and Y. W. Lee, "Numerical study on energy absorption of a floater for design of wave energy converter in ocean," Journal of the Korean Society of Marine Engineering, vol. 36, no. 5, pp. 635-644, 2012. https://doi.org/10.5916/jkosme.2012.36.5.635
  8. J. D. Fenton, "A fifth-order stokes theory for steady waves," Journal of Waterway, Port, Coastal and Ocean Engineering, vol. 111, no. 2, pp. 216-234, 1985. https://doi.org/10.1061/(ASCE)0733-950X(1985)111:2(216)