DOI QR코드

DOI QR Code

Fracture Behavior of Dowel Joint of Concrete Slab Track

콘크리트궤도 슬래브의 다웰 연결부 파괴 거동

  • 권구성 ((주)한화건설 토목환경사업부, 경희대학교 토목공학과) ;
  • 장승엽 (한국철도기술연구원) ;
  • 정원석 (경희대학교 토목공학과)
  • Received : 2013.01.02
  • Accepted : 2013.06.18
  • Published : 2013.09.30

Abstract

Recently, an interest on joint behavior between adjacent concrete slab tracks has increasing due to large application of such track system. Dowel bars are widely used to improve load transfer capacity across the joints. Dowel bars reduce the deflections and stresses by transferring the load between the slabs. This study proposes the lumped shear spring model to efficiently model dowel joints of adjacent slabs. This model includes bearing stiffness between dowel bar and concrete as well as dowel gap. Strength of the proposed spring model is evaluated based on Concrete Capacity Design method under the assumption of shear failure mode in the joints. Experiments are also performed up to failure to evaluate the accuracy of the proposed model. It has been observed that the proposed model is able to predict initial nonlinearity due to dowel gap, and capture material nonlinearity of the test slabs. Thus, it is recommended that the proposed model can be effectively applied to the dowel joints of concrete slab track.

최근 콘크리트궤도 공법이 증가함에 따라 인접한 슬래브를 연결하는 방법에 대한 관심이 높아지고 있다. 슬래브의 연결부는 효과적인 하중전달, 변형 연속화, 응력 분산을 위해서 다웰 시스템이 다수 적용된다. 본 연구에서는 콘크리트 슬래브 다웰연결부를 효율적으로 이상화할 수 있는 연결부의 집중 전단스프링 (Lumped shear spring) 모델을 제안한다. 전단 스프링 모델의 강성은 다웰바의 강성과 유격을 고려하였으며, 강도는 연결부의 전단파괴에 근거한 Concrete Capacity Design(CCD) 방법에 의해 산정되었다. 해석모델의 타당성을 검증하기 위하여 다웰로 연결된 슬래브 실험체를 제작하고 재하실험을 수행하였다. 제안된 해석모델은 다웰과 콘크리트 간의 유격으로 인한 초기 비선형성 및 콘크리트 재료 비선형성을 합리적으로 반영하고 있는 것으로 분석되었다. 따라서 향후 슬래브 다웰 조인트로 연결된 콘크리트궤도의 파괴 시까지의 비선형 거동을 합리적으로 예측함으로써 철도 궤도의 설계 시 효과적으로 활용될 수 있을 것이다.

Keywords

References

  1. ABAQUS, Inc. (2007). ABAQUS/Standard, Version 6.71. Pawtucket, R.I., USA.
  2. ACI Committee 318. (2008). Building code requirements for structural concrete and commentary (ACI 318M-08), American Concrete Institute, Detroit, Mich.
  3. Bhatti, M., Molinas-Vega, I. and Stoner, J. (1998). "Nonlinear analysis of jointed concrete pavements." Transportation Research Record: Journal of the Transportation Research Board, Vol. 1629, pp. 50-57. https://doi.org/10.3141/1629-07
  4. Choi, D. and Chun, S. (2007). "Anchoring to concrete." Magazine of Korea Concrete Institute, Vol. 19, No. 4, pp. 41-44 (in Korean).
  5. El-Ariss, B. (2007). "Behavior of beams with dowel action." Engineering Structures, vol. 29, No. 6, pp. 899-903. https://doi.org/10.1016/j.engstruct.2006.07.008
  6. Frantzeskakis, C. and Theillout, J. N. (1989). "Nonlinear finite element analysis of reinforced concrete structures with a particular strategy following the cracking process." Computers & Structures, Vol. 31, No. 3, pp. 395-412. https://doi.org/10.1016/0045-7949(89)90387-8
  7. He, X. G. and Kwan, A. K. H. (2001). "Modeling dowel action of reinforcement bars for finite element analysis of concrete structures." Computers & Structures, Vol. 79, No. 6, pp. 595-604. https://doi.org/10.1016/S0045-7949(00)00158-9
  8. Kim, J. and Hjelmstad, K. (2003). "Three-dimensional finite element analysis of doweled joints for airport pavements." Transportation Research Record: Journal of the Transportation Research Board, Vol. 1853, pp 100-109. https://doi.org/10.3141/1853-12
  9. Korea Concrete Institute (2007). Design code for concrete structures, Appendix IV, pp. 462-494 (in Korean).
  10. Land Transport and Maritime R&D Report. (2011). Development of low vibration track (Floating slab track) and technology for improvement of performance of long-span bridges (in Korean).
  11. Lee, J. and Fenves, G. L. (1998). "Plastic-damage model for cyclic loading of concrete structures." Journal of Engineering Mechanics Division, ASCE, Vol. 124, No. 8, pp. 892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)
  12. Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989). "A Plasticdamage model for concrete." International Journal of Solids and Structures, Vol. 25, No. 3, pp. 299-326. https://doi.org/10.1016/0020-7683(89)90050-4
  13. Martin-Perez, B. and Pantazopoulou, S. J. (2001). "Effect of bond, aggregate interlock and dowel action on the shear strength degradation of reinforced concrete." Engineering Structures, Vol. 23, No. 2, pp. 214-227. https://doi.org/10.1016/S0141-0296(00)00004-3
  14. Millard, S. G. and Johnson, R. P. (1984). "Shear transfer across cracks in reinforced concrete due to aggregate interlock and to dowel action." Magazine of Concrete Research, Vol. 36, No. 126, pp. 9-21. https://doi.org/10.1680/macr.1984.36.126.9
  15. Soroushian, P., Obaseki, K. and Rojas, M. C. (1987). "Bearing strength and stiffness of concrete under reinforcing bars." ACI Material Journal, Vol. 84, No. 3, pp. 179-184.

Cited by

  1. Full-scale Test for Load Transfer Efficiency of Fast Hardening Track vol.16, pp.3, 2016, https://doi.org/10.9798/KOSHAM.2016.16.3.229