DOI QR코드

DOI QR Code

Fabrication of Polyimide Film Electrode by Laser Ablation and Application for Electrochemical Glucose Biosensor

Laser ablation을 이용한 폴리이미드 필름 전극제조 및 전기화학적 글루코오즈 바이오센서 응용

  • Park, Deog-Su (Institute of BioPhysio Sensor Technology, Pusan National University)
  • 박덕수 (부산대학교 바이오피지오센서연구소)
  • Received : 2013.08.19
  • Accepted : 2013.09.06
  • Published : 2013.09.30

Abstract

An ultraviolet pulsed laser ablation of polyimide film coated with platinum has been used to enhance the sensitivity for the application as an electrochemical biosensor. Densely packed cones are formed on polyimide surface after UV irradiation which results in increase of surface area. In order to apply the sensitivity improvement of laser ablated polyimide film electrodes, the glucose oxidase modified biosensor was fabricated by using an encapsulation in the gel matrix through sol-gel transition of tetraethoxysliane on the surface of laser ablated polyimide film. The optimum conditions for glucose determination have been characterized with respect to the applied potential and pH. The linear range and detection limit of glucose detection were from 2.0 mM to 18.0 mM and 0.18 mM, respectively. The sensitivity of glucose biosensors fabricated with laser ablated polyimide film is about three times higher than that of plain polyimide film due to increase in surface area by laser ablation.

Keywords

References

  1. J. M. Zen, A. S. Kumar, and J. C. Chen, "Electrocatalytic oxidation and sensitive detection of cysteine on a lead ruthenate pyrochlore modified electrode", Anal. Chem., Vol. 73, pp. 1169-1175, 2001. https://doi.org/10.1021/ac0010781
  2. L. Adler-Abramovich, M. Badihi-Mossberg, E. Gazit, and J. Rishpon, "Characterization of peptidenanostructure- modified electrodes and their application for ultrasensitive environmental monitoring", Small, Vol. 6, No. 7, pp. 825-831, 2010. https://doi.org/10.1002/smll.200902186
  3. D. Du, M. Wang, J. Cai, and A. Zhang, "Sensitive acetylcholinesterase biosensor based on assembly of ${\beta}$- cyclodextrins onto multiwall carbon nanotubes for detection of organophosphates pesticide", Sens. Actuator B-Chem., Vol. 146, pp. 337-341, 2010. https://doi.org/10.1016/j.snb.2010.02.053
  4. M. Grde、n, M. Alsabet, and G. Jerkiewicz, "Surface science and electrochemical analysis of nickel foams", ACS Appl. Mater. Interfaces, Vol. 4, pp. 3012-3021, 2012. https://doi.org/10.1021/am300380m
  5. A. Ressine, C. Vaz-Dominguez, V. M. Fernandez, A. L. De Lacey, T. Laurell, T. Ruzgas, and S. Shleev, "Bioelectrochemical studies of azurin and laccase confined in three-dimensional chips based on goldmodified nano-/microstructured silicon", Biosens. Bioelectron., Vol. 25, pp. 1001-1007, 2010. https://doi.org/10.1016/j.bios.2009.09.014
  6. B. J. Melde and B. J. Johnson, "Mesoporous materials in sensing: morphology and functionality at the mesointerface", Anal. Bioanal. Chem., Vol. 398, pp. 1565-1573, 2010. https://doi.org/10.1007/s00216-010-3688-6
  7. S. J. Bao, C. M. Li, J. F. Zang, X. Q. Cui, Y. Qiao, and J. Guo, "New nanostructured $TiO_2$ for direct electrochemistry and glucose sensor applications", Adv. Funct. Mater., Vol. 18, pp. 591-599, 2008. https://doi.org/10.1002/adfm.200700728
  8. J. S. Im, S. C. Kang, S. H. Lee, and Y. S. Lee, "Improved gas sensing of electrospun carbon fibers based on pore structure, conductivity and surface modification", Carbon, Vol. 48, pp. 2573-2581, 2010. https://doi.org/10.1016/j.carbon.2010.03.045
  9. M. Kathiwala, A. O. Affum, and A. B. Toth, "Direct measurements of xanthine in 2000-fold diluted xanthinuric urine with a nanoporous carbon fiber sensor", Analyst, Vol. 133, pp. 810-816, 2008. https://doi.org/10.1039/b718125f
  10. S. C. B. Mannsfeld, B. C-K. Tee, R. M. Stoltenberg, C. V. H-H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, and Z. Bao, "Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers", Nat. Mater., Vol. 9, pp. 859-864, 2010. https://doi.org/10.1038/nmat2834
  11. L. Valentini, C. Cantalini, I. Armentano, J. M. Kenny, L. Lozzi, and S. Santucci, "Highly sensitive and selective sensors based on carbon nanotubes thin films for molecular detection", Diam. Relat. Mater., Vol. 13, pp. 1301-1305, 2004. https://doi.org/10.1016/j.diamond.2003.11.011
  12. C. R. Pipps, Laser Ablation and Its Applications, Springer Science, New York, 2007.
  13. A. N. Samant and N. B. Dahotre, "Laser machining of structural ceramics-A review", J. Eur. Ceram. Soc., Vol. 29, pp. 969-993, 2009. https://doi.org/10.1016/j.jeurceramsoc.2008.11.010
  14. N. S. Allen, Photochemistry and Photophysics of Polymer Materials, John Wiley & Sons, New Jersey, pp. 541-568, 2010.
  15. R. Srinivasan and B. Braren, "Ultraviolet laser ablarion of organic polymers", Chem. Rev., Vol. 89, pp. 1303-1316, 1989. https://doi.org/10.1021/cr00096a003
  16. C. David, J. Wei, T. Lippert, and A. Wokaun, "Diffractive grey-tone phase masks for laser ablation lithography", Microelectron. Eng., Vol. 57-58, pp. 453-460, 2001. https://doi.org/10.1016/S0167-9317(01)00467-1
  17. R. Suriano, A. Kuznetsov, S. M. Eaton, R. Kiyan, G. Cerullod, R. Osellame, B. N. Chichkov, M. Levi, and S. Turria, "Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels", Appl. Surf. Sci., Vol. 257, pp. 6243-6250, 2011. https://doi.org/10.1016/j.apsusc.2011.02.053
  18. C. A. Aguilara, Y. Lua, S. Maob, and S. Chen, "Direct micro-patterning of biodegradable polymers using ultraviolet and femtosecond lasers", Biomaterials, Vol. 26, pp. 7642-7649, 2005. https://doi.org/10.1016/j.biomaterials.2005.04.053
  19. B. Rubehn, C. Bosman, R. Oostenveld, P. Fries, and T. Stieglitz "A MEMS-based flexible multichannel ECoG-electrode array", J. Neural Eng., Vol. 6, p. 036003, 2009.
  20. S. P. Lacour, S. Benmerah, E. Tarte, J. F. Gerald, J. Serra, S. McMahon, J. Fawcett, O. Graudejus, Z, Yu, and B. Morrison III, "Flexible and stretchable microelectrodes for in vitro and in vivo neural interfaces", Med. Biol. Eng. Comput., Vol. 48, pp. 945-954, 2010. https://doi.org/10.1007/s11517-010-0644-8
  21. B. Roeger, "Laser microvia formation in polyimide thinfilms for metallization applications", Circuit World, Vol. 37, No. 4, pp. 20-29, 2011.
  22. K. T. Kim, J. Y. Oh, B. S. Shin, and D. S. Park, "Surface treatment of polyimide film by pulsed UV laser ablation and its effect on the electrochemical characteristics", Bull. Korean Chem. Soc., Vol. 33, No. 12, pp. 3937-3938, 2012. https://doi.org/10.5012/bkcs.2012.33.12.3937
  23. L. C., Jr. Clark and C. Lynos, "Electrode systems for continuous monitoring in cardiovascular surgery", Ann. N. Y. Acad. Sci., Vol. 102, pp. 29-45, 1962.
  24. A. E. G. Cass, G. Davis, G. D. Francis, H. A. O. Hill, W. J. Aston, I. J. Higgins, E. V. Plotkin, L. D. L. Scott, and A. P. F. Turner, "Ferrocene-mediated enzyme electrode for amperometric determination of glucose", Anal. Chem., Vol. 56, pp. 667-671, 1984. https://doi.org/10.1021/ac00268a018
  25. M. Yang, Y. Yang, Y. Liu, G. Shen, and R. Yu, "Platinum nanoparticles-doped sol-gel/carbon nanotubes composite electrochemical sensors and biosensors", Biosens. Bioelectron., Vol. 21, pp. 1125-1131, 2006. https://doi.org/10.1016/j.bios.2005.04.009
  26. C. Deng, J. Chen, Z. Nie, and S. Si, "A sensitive and stable biosensor based on the direct electrochemistry of glucose oxidase assembled layer-by-layer at the multiwall carbon nanotube-modified electrode", Biosens. Bioelectron., Vol. 26, pp. 213-219, 2010. https://doi.org/10.1016/j.bios.2010.06.013
  27. C. Shan, H. Yang, J. Song, D. Han, A. Ivaska, and L. Niu, "Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene", Anal. Chem., Vol. 81, pp. 2378-2382, 2009. https://doi.org/10.1021/ac802193c
  28. V. Oliveira and R. Vilar, "KrF pulsed laser ablation of polyimide", Appl. Phys. A, Vol. 92, pp. 957-961, 2008. https://doi.org/10.1007/s00339-008-4619-7
  29. P. E. Dyer, S. D. Jenkins, and J. Sidhu, "Development and origin of conical structures on XeCl laser ablated polyimide", Appl. Phys. Lett., Vol. 49, No. 8, pp. 453-455, 1986. https://doi.org/10.1063/1.97113
  30. B. Hopp, Z. Szilassi, K. Revesz, Z. Kocsis, and I. Mudra, "Excimer laser induced conductivity on silver salt filled polyimide films", Appl. Surf. Sci., Vol. 109/110, pp. 212-217, 1997. https://doi.org/10.1016/S0169-4332(96)00914-2
  31. N. Bityurin, B. S. Luk'yanchuk, M. H. Hong, and T. C. Chong, "Models for laser ablation of polymers", Chem. Rev., Vol. 103, pp. 519-552, 2003. https://doi.org/10.1021/cr010426b
  32. R. Srinivasan and B. Braren, "Ultraviolet laser ablation of organic polymers", Chem. Rev., Vol. 89, No. 6, pp. 1303-1316, 1989. https://doi.org/10.1021/cr00096a003
  33. P. Karam and L.I. Halaoui, "Sensing of $H_2O_2$ at low surface density assemblies of Pt nanoparticles in polyelectrolyte", Anal. Chem., Vol. 80, pp. 5441-5448, 2008. https://doi.org/10.1021/ac702358d
  34. J. M. You, D. Kim, and S. Jeon, "Electrocatalytic reduction of $H_2O_2$ by Pt nanoparticles covalently bonded to thiolated carbon nanostructures", Electrochim. Acta, Vol. 65, pp. 288-293, 2012. https://doi.org/10.1016/j.electacta.2012.01.070
  35. W. Z. Jia, K. Wang, Z. J. Zhu, H. T. Song, and X. H. Xia, "One-step immobilization of glucose oxidase in a silica matrix on a Pt electrode by an electrochemically induced sol-gel process", Langmuir, Vol. 23, pp. 11896-11900, 2007. https://doi.org/10.1021/la7020269
  36. S. C. Chang and D. S. Park, "Development of glucose biosensor using sol-gel reaction of tetraethoxysilane", J. Sensor Sci. & Tech., Vol. 21, No. 4, pp. 311-317, 2012. https://doi.org/10.5369/JSST.2012.21.4.311