DOI QR코드

DOI QR Code

Fabrication and Characterization of Zirconia Thermal Barrier Coatings by Spray Drying and Atmospheric Plasma Spraying

분무건조 및 대기 플라즈마 용사에 의한 지르코니아 열차폐 코팅재의 제조 및 평가

  • Kim, Chul (School of Mechanical Systems Engineering, Kookmin University) ;
  • Heo, Yong Suk (School of Mechanical Systems Engineering, Kookmin University) ;
  • Kim, Tae Woo (School of Mechanical Systems Engineering, Kookmin University) ;
  • Lee, Kee Sung (School of Mechanical Systems Engineering, Kookmin University)
  • 김철 (국민대학교 기계시스템공학부 기계설계전공) ;
  • 허용석 (국민대학교 기계시스템공학부 기계설계전공) ;
  • 김태우 (국민대학교 기계시스템공학부 기계설계전공) ;
  • 이기성 (국민대학교 기계시스템공학부 기계설계전공)
  • Received : 2013.07.22
  • Accepted : 2013.08.19
  • Published : 2013.09.30

Abstract

In this study, we prepared yttria stabilized zirconia granules for thermal barrier coatings using a spray drying process. First, we characterized the properties of granules such as flow rate and packing density for utilizing the air plasma spray process. The flow rate and packing density data showed 0.732 g/sec and 2.14 $g/cm^3$, respectively, when we used larger and denser particles, which are better than hollow granules or smaller spherical granules. Second, we chose larger, spherical granules fabricated in alcohol solvent as starting powders and sprayed it on the bondcoat/nimonic alloy by an atmospheric plasma spray process varying the process parameters, the feeding rate, gun speed and spray distance. Finally, we evaluated representative thermal and mechanical characteristics. The thermal expansion coefficients of the coatings were $11{\sim}12.7{\times}10^{-6}/^{\circ}C$ and the indentation stress measured was 2.5 GPa at 0.15 of indentation strain.

Keywords

References

  1. P. Fauchais, "Understanding Plasma Spraying," J. Phys. D : Appl. Phys., 37 R86-108 (2004). https://doi.org/10.1088/0022-3727/37/9/R02
  2. S. W. Myoung, J. H. Kim, W. R. Lee, Y. G. Jung, K. S. Lee, and U. Paik, "Microstructure Design and Mechanical Properties of Thermal Barrier Coatings with Layered Top and Bond Coats," Surf. Coat. Technol., 205 [5] 1229-35 (2010). https://doi.org/10.1016/j.surfcoat.2010.08.063
  3. A. Vaidya, V. Srinivasan, T. Streibl, M. Friis, W. Chi, and S. Sampath, "Process Maps for Plasma Spraying of Yttria-Stabilized Zirconia: An Integrated Approach to Design, Optimization and Reliability," Mater. Sci. Eng. A, 497, 239-53 (2008). https://doi.org/10.1016/j.msea.2008.07.058
  4. D. H. Lee and K. S. Lee, "Mechanical Behavior of Layered YSZ Thermal Barrier Coatings using Indentation Test," J. Korean Ceram. Soc., 48 [5] 396-403 (2011). https://doi.org/10.4191/kcers.2011.48.5.396
  5. U. Shulz, S. G. Terry, and C. G. Levi, "Microstructure and Texture of EB-PVD TBCs Grown under Different Rotation Modes," Mater. Sci. Eng. A, 360, 319-29 (2003). https://doi.org/10.1016/S0921-5093(03)00470-2
  6. K. S. Lee, K. I. Jung, Y. S. Heo, T. W. Kim, Y. G. Jung, and U. Paik, "Thermal and Mechanical Properties of Sintered Bodies and EB-PVD Layers of $Y_2O_3$ Added $Gd_2Zr_2O_7$ Ceramics for Thermal Barrier Coatings," J. Alloys Compd., 507, 448-55 (2010). https://doi.org/10.1016/j.jallcom.2010.07.196
  7. B. K. Jang, J. G. Sun, S. W. Kim, Y. S. Oh, and H. T. Kim, "Characterization of the Thermal Conductivity of EB-PVD $ZrO_2-Y_2O_3$ Coatings with a Pulsed Thermal Imaging Method," Surf. Coat. Technol., 207, 177-81 (2012). https://doi.org/10.1016/j.surfcoat.2012.06.055
  8. Y. S. Heo, S. H. Park, I. S. Han, S. K. Woo, Y. G. Jung, U. Paik, and K. S. Lee, "Influence of Subsurface Layer on the Indentation Damage Behavior of YSZ Thermal Barrier Coating Layers Deposited by Electron Beam Physical Vapor Deposition," J. Korean Ceram. Soc., 45 [9] 549-55 (2008). https://doi.org/10.4191/KCERS.2008.45.9.549
  9. A. D. Jadhav and N. P. Padture, "Mechanical Properties of Solution-Precursor Plasma-Sprayed Thermal Barrier Coatings," Surf. Coat. Technol., 202, 4976-79 (2008). https://doi.org/10.1016/j.surfcoat.2008.04.091
  10. L. Xie, D. Chen, E. H. Jordan, A. Ozturk, F. Wu, X. Ma, B. M. Cetegen, and M. Gell, "Formation of Vertical Cracks in Solution-Precursor Plasma-Sprayed Thermal Barrier Coatings," Surf. Coat. Technol., 201, 1058-64 (2006). https://doi.org/10.1016/j.surfcoat.2006.01.020
  11. X. Q. Cao, R. Vassen, S. Schwartz, W. Jungen, F. Tietz, and D. Stever, "Spray-drying of Ceramics for Plasma-Spray Coating," J. Eur. Ceram. Soc., 20, 2433-39 (2000). https://doi.org/10.1016/S0955-2219(00)00112-6
  12. G. Bertrand, P. Bertrand, P. Roy, C. Rio, and R. Mevrel, "Low Conductivity Plasma Sprayed Thermal Barrier Coatings Using Hollow psz Spheres: Correlation between Thermophysical Properties and Microstructure," Surf. Coat. Technol., 202, 1994-2001 (2008). https://doi.org/10.1016/j.surfcoat.2007.08.042
  13. B. Ercan, K. J. Bowman, R. W. Trice, H. Wang, and W. Porter, "Effect of Initial Powder Morphology on Thermal and Mechanical Properties of Stand-alone Plasma-Sprayed 7 wt% $Y_2O_3-ZrO_2$ Coatings," Mater. Sci. Eng. A, 435-436, 212-20 (2006). https://doi.org/10.1016/j.msea.2006.07.085
  14. A. Schrijnemakers, S. Andr, G. Lumay, N. Vandwalle, F. Boschini, R. Cloots, and B. Vertruyen, "Mullite Coatings on Ceramic Substrates: Stabilisation of $Al_2O_3-SiO_2$ Suspensions for Spray Drying of Composite Granules Suitable for Reactive Plasma Spraying," J. Eur. Ceram. Soc., 29, 2169-75 (2009). https://doi.org/10.1016/j.jeurceramsoc.2009.01.031
  15. L. Wang, Y. Wang, X. G. Sun, J. Q. He, Z. Y. Pan, and L. L. Yu, "Preparation and Characterization of Nanostructured $La_2Zr_2O_7$ Feedstock Used for Plasma Spraying," Powder Technol., 212, 267-77 (2011). https://doi.org/10.1016/j.powtec.2011.06.001
  16. Y. Bai, J. J. Tang, Y. M. Qu, S. Q. Ma, C. H. Ding, J. F. Yang, L. Yu, and Z. H. Han, "Influence of Original Powders on the Microstructure and Properties of Thermal Barrier Coatings Deposited by Supersonic Atmospheric Plasma Spraying, Part I: Microstructure," Ceram. Int., 39, 5113-24 (2013). https://doi.org/10.1016/j.ceramint.2012.12.007
  17. B. R. Lawn, "Indentation of Ceramics with Spheres : A Century after Hertz," J. Am. Ceram. Soc., 81 [8] 1977-94 (1998).
  18. X. Q. Cao, R. Vassen, and D. Stoever, "Ceramic Materials for Thermal Barrier Coatings," J. Eur. Ceram. Soc., 24, 1-10 (2004). https://doi.org/10.1016/S0955-2219(03)00129-8
  19. J. Y. Kwon, J. H. Lee, H. C. Kim, Y. G. Jung, U. Paik, and K. S. Lee, "Effect of Thermal Fatigue on Mechanical Characteristics and Contact Damage of Zirconia-based Thermal Barrier Coatings with HVOF-Sprayed Bond Coat," Mater. Sci. Eng. A, 429, 173-80 (2006). https://doi.org/10.1016/j.msea.2006.05.082

Cited by

  1. Fabrication and Characterization of Environmental Barrier Coatings by Spray Drying and Atmospheric Plasma Spraying for Protection of Silicon Carbide Ceramics vol.51, pp.5, 2014, https://doi.org/10.4191/kcers.2014.51.5.481
  2. Indentations on Air Plasma Sprayed Thermal Barrier Coatings Prepared by Different Starting Granules vol.2015, pp.1687-4129, 2015, https://doi.org/10.1155/2015/874190
  3. Preparation of Granule Powders for Thermal Spray Coating by Utilization of Pyrophyllite Minerals vol.53, pp.5, 2016, https://doi.org/10.4191/kcers.2016.53.5.557
  4. Effect of the Raw Material and Coating Process Conditions on the Densification of 8 wt% Y2O3-ZrO2 Thermal Barrier Coating by Atmospheric Plasma Spray vol.53, pp.6, 2016, https://doi.org/10.4191/kcers.2016.53.6.628
  5. Characteristics of Bulk and Coating in Gd2−xZr2+xO7+0.5x(x = 0.0, 0.5, 1.0) System for Thermal Barrier Coatings vol.53, pp.6, 2016, https://doi.org/10.4191/kcers.2016.53.6.652
  6. Evaluation of Thermal Durability of Thermal Barrier Coating and Change in Mechanical Behavior vol.54, pp.4, 2017, https://doi.org/10.4191/kcers.2017.54.4.05
  7. Durability Analysis and Experimental Validation of Environmental Barrier Coating (EBC) Performance Using Combined Digital Image Correlation and NDE vol.6, pp.4, 2016, https://doi.org/10.3390/coatings6040070
  8. 열차폐코팅용 GdO1.5-ZrO2계 희토류 지르코네이트 세라믹스의 상형성과 열물리 특성 vol.51, pp.6, 2014, https://doi.org/10.4191/kcers.2014.51.6.554
  9. 방산 분야 텅스텐 합금 과립분말 개선 연구 vol.21, pp.10, 2013, https://doi.org/10.5762/kais.2020.21.10.206