DOI QR코드

DOI QR Code

Fabrication of Li2TiO3 Pebbles by Lithium Solution Penetration Method

리튬용액 침투방법에 의한 Li2TiO3 페블 제조

  • Yu, Min-Woo (Department of Advanced Materials Science & Engineering, Mokpo National University) ;
  • Park, Yi-Hyun (National Fusion Research Institute) ;
  • Lee, Sang-Jin (Department of Advanced Materials Science & Engineering, Mokpo National University)
  • 유민우 (국립목포대학교 신소재공학과) ;
  • 박이현 (국가핵융합연구소) ;
  • 이상진 (국립목포대학교 신소재공학과)
  • Received : 2013.08.03
  • Accepted : 2013.09.06
  • Published : 2013.09.30

Abstract

To fabricate spherical lithium titanate ($Li_2TiO_3$) pebbles which are used for a breeder material in fusion reactor, titanium oxide ($TiO_2$) granules were used as a starting material. The granules were pre-sintered, and then aqueous lithium nitrate solution infiltrated into the granules at vacuum condition. The granules were crystallized to $Li_2TiO_3$ after sintering under the control of process parameters. In this study, the concentration of lithium in the solution, as well as the number of penetration times and sintering temperature affected the final crystallite phase and the microstructure of the pebbles. In particular, the sphericity and size of the pebbles were effectively controlled by a technical rolling process. The useful spherical $Li_2TiO_3$ pebbles which have 10~20% porosity and 60~120 N compressive strength were obtained through the sintering at $1000{\sim}1100^{\circ}C$ in the multi-times infiltration process with 50 wt% solution. The physical properties of pebbles such as density, porosity and strength, can be controlled by a selection of $TiO_2$ powders and control of processing parameters. It can be thought that the lithium penetration method is a useful method for the fabrication of mass product of spherical $Li_2TiO_3$ pebbles.

Keywords

References

  1. D. Mandal, D. Sathiyamoorthy, and D.V. Khakhar, "Fluidization Characteristics of Lithium-Titanate in Gas-Solid Fluidized Bed," Fusion Eng. Des., 86, 393-98 (2011). https://doi.org/10.1016/j.fusengdes.2011.03.062
  2. D. Mandala, S. K. Ghosh, and M. R. K. Shenoi, "Synthesis and Fabrication of Lithium-Titanate Pebbles for ITER Breeding Blanket by Solid State Reaction and Spherodization," Fusion Eng. Des., 85, 819-23 (2010). https://doi.org/10.1016/j.fusengdes.2010.06.018
  3. N. Roux, J. Avon, A. Floreancig, J. Mougin, B. Rasneur, and S. Ravel, "Low Temperature Tritium Releasing Ceramics as Potential Materials for the ITER Breeding Blanket," J. Nucl. Mater., 233-237, 1431-35 (1996). https://doi.org/10.1016/S0022-3115(96)00136-5
  4. J. G. Van Der Laan, H. Kawamura, N. Roux, and D. Yamaki, "Ceramic Breeder Research and Development: Progress and Focus," J. Nucl. Mater., 283-287, 99-109 (2000). https://doi.org/10.1016/S0022-3115(00)00352-4
  5. C. E. Johnson, G. W. Hollenberg, N. Roux, and H. Watanabe, "Current Experimental Activities for Solid Breeder Development," Fusion Eng. Des., 8, 145-53 (1989). https://doi.org/10.1016/S0920-3796(89)80099-7
  6. T. Tanifuji, D. Yamaki, S. Nasu, and K. Noda, "Tritium Release Behavior from Neutron-Irradiated $Li_2TiO_3$ Single Crystal," J. Nucl. Mater., 258-263, 543-48 (1998). https://doi.org/10.1016/S0022-3115(98)00103-2
  7. K. Tsuchiya, A. Kikukawa, D. Yamaki, M. Nakamichi, M. Enoeda, and H. Kawamura, "In-situ Tritium Release Behavior from $Li_2TiO_3$ Pebble-Bed," Fusion Eng. Des., 58-59, 679-82 (2001). https://doi.org/10.1016/S0920-3796(01)00527-0
  8. H. Kawamura, A. Kikukawa, K. Tsuchiya, H. Yamada, M. Nakamichi, E. Ishitsuka, M. Enoeda, and H. Ito, "Evaluation of Effective Thermal Diffusivity of $Li_2TiO_3$ Pebble Bed under Neutron Irradiation," Fusion Eng. Des., 69, 263-67 (2003). https://doi.org/10.1016/S0920-3796(03)00351-X
  9. S. Saito, K. Tsuchiya, H. Kawamura, and T. Terai, "Density Dependence on Thermal Properties of $Li_2TiO_3$ Pellets," J. Nucl. Mater., 253, 213-18 (1998). https://doi.org/10.1016/S0022-3115(97)00314-0
  10. A. Abou-Sena, A. Ying, and M. Abdou, "Effective Thermal Conductivity of Lithium Ceramic Pebble Beds for Fusion Blankets: A Review," Fusion Sci. Technol., 47, 1094-100 (2005). https://doi.org/10.13182/FST05-3
  11. X. Wu, Z. Wen, X. Xu, Z. Gu, and X. Xu, "Optimization of a Wet Chemistry Method for Fabrication of $Li_2TiO_3$ Pebbles," J. Nucl. Mater., 373, 206-11 (2008). https://doi.org/10.1016/j.jnucmat.2007.05.045
  12. J. D. Lulewicz and N. Roux, "Fabrication of $Li_2TiO_3$ Pebbles by the Extrusion-Spheronisation-Sintering Process," J. Nucl. Mater., 307-311, 803-06 (2002). https://doi.org/10.1016/S0022-3115(02)00981-9
  13. M. Hong, Y. C. Zhang, Y. H. Liu, and B. J. Fu, "Fabrication of $Li_2TiO_3$ Ceramic Pebbles by Gel-casting Method," Key Eng. Mater., 512-515, 1717-20 (2012). https://doi.org/10.4028/www.scientific.net/KEM.512-515.1717
  14. X. Wu, Z. Wen, J. Han, X. Xu, and B. Lin, "Fabrication of $Li_2TiO_3$ Pebbles by Water-Based Sol-Gel Method," Fusion Eng. Des., 83, 112-16 (2008). https://doi.org/10.1016/j.fusengdes.2007.09.005
  15. K. Tsuchiya, H. Kawamura, K. Fuchinoue, H. Sawada, and K. Watarumi, "Fabrication Development and Preliminary Characterization of $Li_2TiO_3$ Pebbles by Wet Process," J. Nucl. Mater., 258-263, 1985-90 (1998). https://doi.org/10.1016/S0022-3115(98)00229-3
  16. R. Knitter and B. Lobbecke, "Reprocessing of Lithium Orthosilicate Breeder Material by Remelting," J. Nucl. Mater., 361, 104-11 (2007). https://doi.org/10.1016/j.jnucmat.2006.11.005
  17. Y. J. Feng, K. M. Feng, Q. X. Cao, J. Hu, and H. Tang, "Fabrication and Characterization of $Li_4SiO_4$ Pebbles by Melt Spraying Method," Fusion Eng. Des., 87, 753-56 (2012). https://doi.org/10.1016/j.fusengdes.2012.02.016
  18. G. I. Szasz, K. Heinzinger, and G. Palinkas, "The Structure of the Hydration Shell of the Lithium Ion," J. Chem. Phys. Lett., 78, 194-96 (1981). https://doi.org/10.1016/0009-2614(81)85582-0
  19. H. Kleykamp, "Phase Equilibria in the Li-Ti-O System and Physical Properties of $Li_2TiO_3$," Fusion Eng. Des., 61-62, 361-66 (2002). https://doi.org/10.1016/S0920-3796(02)00120-5
  20. C. H. Jung, S. J. Lee, W. M. Kriven, J. Y. Park, and W. S Gyu, "A Polymer Solution Technique for the Synthesis of Nano-sized $Li_2TiO_3$ Ceramic Breeder Powder," J. Nucl. Mater., 373, 194-98 (2008). https://doi.org/10.1016/j.jnucmat.2007.05.050

Cited by

  1. Functional Li-M (Ti, Al, Co, Ni, Mn, Fe)-O Energy Materials vol.54, pp.1, 2017, https://doi.org/10.4191/kcers.2017.54.1.11