DOI QR코드

DOI QR Code

Processing of Kaolin-Based Microfiltration Membranes

  • Eom, Jung-Hye (Functional Ceramics Laboratory, Department of Materials Science and Engineering, The University of Seoul) ;
  • Kim, Young-Wook (Functional Ceramics Laboratory, Department of Materials Science and Engineering, The University of Seoul) ;
  • Song, In-Hyuck (Engineering Ceramics Group, Korea Institute of Materials Science)
  • Received : 2013.08.19
  • Accepted : 2013.09.12
  • Published : 2013.09.30

Abstract

Kaolin-based membranes with a pore size of 0.30-0.40 ${\mu}m$ were successfully prepared by a simple pressing route using low-cost starting materials, kaolin and sodium borate. The prepared green bodies were sintered at different temperatures ranging between 900 and $1200^{\circ}C$. The sintered membranes were characterized by X-ray diffraction, mercury porosimetry, scanning electron microscopy, and capillary flowmetry. It was observed that the porosity decreased with an increase in both the sintering temperature and the sodium borate content, whereas the flexural strength increased with an increase in both the sintering temperature and the sodium borate content. The air flow rate decreased with an increase in the sodium borate content. The typical porosity, flexural strength, and specific flow rate of the kaolin-based membrane sintered with 5 wt% sodium borate at $1100^{\circ}C$ were 37%, 19 MPa, and $1{\times}10^{-3}L/min/cm^2$, respectively, at a p of 30 psi.

Keywords

References

  1. D.-S. Bae, D.-S. Cheong, K.-S. Han, and S.-H. Choi, "Fabrication and Microstructure of $Al_2O_3/TiO_2$ Composite Membranes with Ultrafine pores," Ceram. Int., 24, 25-30 (1998). https://doi.org/10.1016/S0272-8842(96)00072-7
  2. J. M. Benito, A. Conesa, F. Rubio, and M. A. Rodriguez, "Preparation and Characterization of Tubular Ceramic Membranes for Treatment of Oil Emulsions," J. Eur. Ceram. Soc., 25 [11] 1895-903 (2005). https://doi.org/10.1016/j.jeurceramsoc.2004.06.016
  3. G. Pugagzhenthi, S. Sachan, N. Kishore, and A. Kumar, "Separation of Chromium (VI) using Modified Ultrafiltration Charged Carbon Membrane and its Mathematical Modeling," J. Membr. Sci., 254 [1-2] 229-39 (2005). https://doi.org/10.1016/j.memsci.2005.01.011
  4. T. B. Kim, S. Y. Choi, and G. D. Kim, "Characterization of Ceramic Composite-Membranes Prepared by TEOS-PEG Coating Sol," J. Kor. Ceram. Soc., 42 [3] 165-70 (2005). https://doi.org/10.4191/KCERS.2005.42.3.165
  5. X. Ding, Y. Fan, and N. Xu, "A New Route for the Fabrication of $TiO_2$ Ultrafiltration Membranes with Suspension Derived from a Wet Chemical Synthesis," J. Membr. Sci., 270 [1-2] 179-86 (2006). https://doi.org/10.1016/j.memsci.2005.07.003
  6. I. M. Kwon, I. H. Song, Y. J. Park, J. W. Lee, H. S Yun, and H. D. Kim, "The Synthesis and Pore Property of Hydrogen Membranes Derived from Polysilazane as Inorganic Polymer," J. Kor. Ceram. Soc., 46 [5] 462-66 (2009). https://doi.org/10.4191/KCERS.2009.46.5.462
  7. B. Michen, A. Diatta, J. Fritsch, C. Aneziris, and T. Graule, "Removal of Colloidal Particles in Ceramic Depth Filters Based on Diatomaceous Earth," Sep. Purif. Technol., 81, 77-87 (2011).
  8. J. H. Eom, Y.-W. Kim, S. S. Lee, and D. H. Jeong, "Processing and Vermiculite-silica Composites with Prefer-Oriented Rod Like Pores," J. Kor. Ceram. Soc., 49 [4] 347-51 (2012). https://doi.org/10.4191/kcers.2012.49.4.347
  9. S. Vercaluteren, K. Keizer, E. F. Vansant, J. Luyten, and R. Leysen, "Porous Ceramic Membranes: Preparation, Transport Properties and Applications," J. Porous Mater., 5, 241-58 (1998). https://doi.org/10.1023/A:1009634305315
  10. R. D. Colle, C. A. Fortulan, and S. R. Fontes, "Manufacture and Characterization of Ultra and Microfiltration Ceramic Membranes by Isostatic Pressing," Ceram. Int., 37, 1161-68 (2011). https://doi.org/10.1016/j.ceramint.2010.11.039
  11. Y. H. Wang, X. Q. Liu, and G. Y. Meng, "Dispersion and Stability of 8 mol.% Yttria Stabilized Zirconia Suspensions for Dip-Coating Filtration Membranes," Ceram. Int., 33, 1025-31 (2007). https://doi.org/10.1016/j.ceramint.2006.03.011
  12. K. A. Defriend, M. R. Wiesner, and A. R. Barron, "Alumina and Aluminate Ultrafiltration Membranes Derived Alumina Nanoparticles," J. Membr. Sci., 224 [1-2] 11-28 (2003). https://doi.org/10.1016/S0376-7388(03)00344-2
  13. H. Qi, Y. Fan, W. Xing, and L. Winnubst, "Effect of $TiO_2$ Doping on the Characteristics of Macroporous $Al_2O_3/TiO_2$ Membrane Supports," J. Eur. Ceram. Soc., 30 [6] 1317-25 (2010). https://doi.org/10.1016/j.jeurceramsoc.2009.12.011
  14. S. Kroll, L.Treccani, K. Rezwan, and G. Grathwohl, "Development and Characterization of Functionalized Ceramic Micro-tubes for Bacteria Filtration," J. Membr. Sci., 365 [1-2] 447-55 (2010). https://doi.org/10.1016/j.memsci.2010.09.045
  15. L. L. O. Silva, D. C. L. Vasconcelos, E. H. M. Nunes, L. Caldeira, V. C. Costa, A. P. Musse, S. A. Hatimondi, J. F. Nascimento, W. Grava, and W. L. Vasconcelos, "Processing, Structural Characterization and Performance of Alumina Supports used in Ceramic Membranes," Ceram. Int., 38, 1943-49 (2012). https://doi.org/10.1016/j.ceramint.2011.10.025
  16. J. Cui, X. Zhang, H. Liu, S. Liu, and K. L. Yeung, "Preparation and Application of Zeolite/Ceramic Microfiltration Membranes for Treatment of Oil Contaminated Water," J. Membr. Sci., 325 [1] 420-26 (2008). https://doi.org/10.1016/j.memsci.2008.08.015
  17. M. R. Weir, E. Rutinduka, C. Detellier, C. Y. Feng, Q. Wang, T. Matsuura, and R. LeVanMao, "Fabrication, Characterization and Preliminary Testing of All-Inorganic Ultrafiltration Membranes Composed Entirely of a Naturally Occurring Sepiolite Clay mineral," J. Membr. Sci., 182 [1-2] 41-50 (2001). https://doi.org/10.1016/S0376-7388(00)00547-0
  18. S. Khemakhem, A. Larbot, and R. B. Amara, "Study of Performances of Ceramic Microfiltration Membrane from Tunisian Clay Applied to Cuttlefish Effluents Treatment," Desalination, 200 [1-3] 307-09 (2006). https://doi.org/10.1016/j.desal.2006.03.327
  19. N. Saffaj, M. Persin, S. A. Younsi, A. Albizan, M. Cretin, and A. Larbot, "Elaboration and Characterization of Micro-Filtration and Ultra-Filtration Membranes Deposited on Raw Support Prepared from Natural Moroccan Clay: Application to Filtration of Solution Containing Dyes and Salts," Appl. Clay Sci., 31 [1-2] 110-19 (2006). https://doi.org/10.1016/j.clay.2005.07.002
  20. F. Bouzerara, A. Harabi, S. Achour, and A. Larbot, "Porous Ceramic Supports for Membranes Prepared from Kaolin and Doloma Mixtures," J. Eur. Ceram. Soc., 26 [9] 1663-71 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.03.244
  21. D. Vasanth, G. Puggazhenthi, and R. Uppaluri, "Fabrication and Properties of Low Cost Ceramic Microfiltration Membranes for Separation of Oil and Bacteria from its Solution," J. Membr. Sci., 379 [1-2] 154-63 (2011). https://doi.org/10.1016/j.memsci.2011.05.050
  22. P. Monash and G. Pugazhenthi, "Effect of $TiO_2$ Addition on the Fabrication of Ceramic Membrane Supports: A Study on the Separation of Oil Droplets and Bovine Serum Albumin (BSA) from its Solution," Desalination, 279 [1-3] 104-14 (2011). https://doi.org/10.1016/j.desal.2011.05.065
  23. M. Kazemimoghadam and T. Mohammadi, "Preparation of Nano Pore Hydroxysodalite Zeolite Membranes using of Kaolin Clay and Chemical Sources," Desalination, 278 [1-3] 438-42 (2011). https://doi.org/10.1016/j.desal.2011.05.042
  24. M. Abbasi, M. Mirfendereski, M. Nikbakht, M. Golshenas, and T. Mohammadi, "Performance Study of Mullite and Mullite-Alumina Ceramic MF Membranes for Oily Wastewater Treatment," Desalination, 259 [1-3] 169-78 (2010). https://doi.org/10.1016/j.desal.2010.04.013
  25. G. Chen, H. Qi, W. Xing, and Xu, "Direct Preparation of Macroporous Mullite Supports for Membranes by in situ Reaction Sintering," J. Membr. Sci., 318 [1-2] 38-44 (2008). https://doi.org/10.1016/j.memsci.2008.01.034
  26. B. K. Nandi, R. Uppaluri, and M. K. Purkait, "Identification of Optimal Membrane Morphological Parameters During Microfiltration of Mosambi Juice using Low Cost Ceramic Membranes," LWT-Food Sci. Technol., 44 [1] 214-23 (2011). https://doi.org/10.1016/j.lwt.2010.06.026
  27. D. Vasanth, R. Uppaluri, and G. Pugazhenthi, "Influence of Sintering Temperature on the Properties of Porous Ceramic Supports Prepared by Uniaxial Dry Compaction Method using Low Cost Raw Materials for Membrane Applications," Sep. Sci. Technol., 46, 1241-49 (2011). https://doi.org/10.1080/01496395.2011.556097
  28. S. Khemakhem, A. Larbot, and R. Ben Amar, "New Ceramic Microfiltration Membranes from Tunisian Natural Materials: Application for the Cuttlefish Effluents Treatment," Ceram. Int., 35, 55-91 (2009). https://doi.org/10.1016/j.ceramint.2007.09.117
  29. K. Y. Lim, Y.-W. Kim, and I. H. Song, "Porous Sodium Borate-Bonded SiC Ceramics," Ceram. Int., 39, 6827-34 (2013). https://doi.org/10.1016/j.ceramint.2013.02.014
  30. J. H. Eom, Y.-W. Kim, I. H. Song, and H. D. Kim, "Microstructure and Properties of Porous Silicon Carbide Fabricated by Carbothermal Reduction and Subsequent Sintering Process," Mater. Sci. Eng. A, 464, 129-34 (2007). https://doi.org/10.1016/j.msea.2007.03.076
  31. P. K. Lin and D. S. Tsai, "Preparation and Analysis of a Silicon Carbide Composite Membrane," J. Am. Ceram. Soc., 80 [2] 365-72 (1997).
  32. Y. Dong, X. Feng, D. Dong, S. Wang, J. Yang, J. Gao, X. Liu, and G. Meng, "Elaboration and Chemical Corrosion Resistance of Tubular Macro-Porous Cordierite Ceramic Membrane Supports," J. Membr. Sci., 304 [1-2] 65-75 (2007). https://doi.org/10.1016/j.memsci.2007.06.058
  33. S. Emani, R. Uppsluri, and M. K. Purkait, "Preparation and Characterization of Low Cost Ceramic Membranes for Mosambi Juice Clarification," Desalination, 317, 32-40 (2013). https://doi.org/10.1016/j.desal.2013.02.024
  34. J. H. Eom, Y.-W. Kim, and I. H. Song, "Effects of the Initial ${\alpha}$-SiC Content on the Microstructure, Mechanical Properties, and Permeability of Macroporous Silicon Carbide Ceramics," J. Eur. Ceram. Soc., 32 [6] 1283-90 (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.11.040
  35. S. Ding, Y. Zeng, and D. Jiang, "Gas Permeability Behavior of Mullite-Bonded Porous Silicon Carbide Ceramics," J. Mater. Sci., 42, 7171-75 (2007). https://doi.org/10.1007/s10853-007-1577-y

Cited by

  1. Effect of Clay-Mineral Composition on Flexural Strength of Clay-based Membranes vol.51, pp.5, 2014, https://doi.org/10.4191/kcers.2014.51.5.380
  2. Hierarchical Structure of Porous Silicon Nitride Ceramics with Aligned Pore Channels Prepared by Ice-Templating and Nitridation of Silicon Powder vol.12, pp.5, 2015, https://doi.org/10.1111/ijac.12432
  3. Effect of Alkaline-Earth Oxide Additives on Flexural Strength of Clay-Based Membrane Supports vol.52, pp.3, 2015, https://doi.org/10.4191/kcers.2015.52.3.180
  4. Effect of Strontium Carbonate Content on Flexural Strength of Clay-Based Membrane Supports vol.52, pp.6, 2015, https://doi.org/10.4191/kcers.2015.52.6.467
  5. Low-cost clay-based membranes for oily wastewater treatment vol.122, pp.1429, 2013, https://doi.org/10.2109/jcersj2.122.788
  6. The preparation and characterizations of pyrophyllite-diatomite composite support layers vol.123, pp.1443, 2013, https://doi.org/10.2109/jcersj2.123.1043
  7. Development of TiO 2 -coated YSZ/silica nanofiber membranes with excellent photocatalytic degradation ability for water purification vol.10, pp.1, 2013, https://doi.org/10.1038/s41598-020-74637-1
  8. Characterization and beneficiation of Ethiopian kaolin for use in fabrication of ceramic membrane vol.8, pp.11, 2021, https://doi.org/10.1088/2053-1591/ac2f75