Chemical Constituents from the Aerial Parts of Aster yomena

Qinglong Jin, Hae Ju Ko, Young-Su Chang, and Eun-Rhan Woo*

College of Pharmacy, Chosun University, Gwangju 501-759, Republic of Korea

Abstract – Nine terpenoids, spinasterone (1), simiarenol (2), phytol (3), lupeol (4), α -amyrin (5), 1β , 4β -dihydroxyeudesman-11-ene (6), 3,7-dihydroxyhumula-4,8(15),10(*E*)-triene (7), 2,6-dihydroxyhumula-3(12),7(13), 9*E*-triene (8), 23-hydroxybetulin (9) were isolated from the aerial parts of *Aster yomena* M. Their structures were identified based on 1D and 2D NMR, including ¹H-¹H COSY, HSQC, HMBC and NOESY spectroscopic analyses. Compounds 1 - 9 were isolated from this plant for the first time. **Key words** – *Aster yomena*, Asteraceae, Terpenoids

Introduction

Aster yomena Makino (Asteraceae), a perennial herb that grows mainly in southern part of Korea, has been used in traditional medicines for the treatment of bronchial asthma, inflammation, and cold (Lee 1993; Ahn 1998). Previous phytochemical studies on this plant have not been nearly done. Recently, we have reported a new megastigmane palmitate, 5(13)-megastigmene-9-one-2 β palmitate, and a new oleanane triterpenoid, 3β ,23,28trihydroxy-12-oleanene-11-one, together with three known oleanane-type triterpenoids, β -amyrin, erythrodiol, and 3β ,23,28-triol olean-12-ene from the methylene chloride soluble fraction of this plant (Jin *et al.*, 2012).

In our continuing studies on this plant, nine terpenoids, spinasterone (1), simiarenol (2), phytol (3), lupeol (4), α -amyrin (5), 1β , 4β -dihydroxyeudesman-11-ene (6), 3,7-dihydroxyhumula-4,8(15),10(*E*)-triene (7), 2,6-dihydroxy humula-3(12),7(13),9*E*-triene (8) and 23-hydroxybetulin (9) were isolated. All isolates have not yet been reported from this plant.

Experimental

General experimental procedures – The optical rotations were measured using an Autopol-IV polarimeter (Rudolph Research Flangers). The EI-MS spectra was recorded on a JEOL JMS 700 mass spectrometer. The NMR spectra were recorded on a JEOL 300, Varian Unity

*Author for correspondence

Inova 500 and Unity Inova 600 spectrometer (KBSI-Gwangju center). Semi-preparative HPLC was performed using a Waters HPLC system equipped with Waters 600 Q-pumps, a 996 photodiode array detector, and a YMC-Pack ODS-A column ($250 \times 10 \text{ mm}$ i.d., 5 µm), flow rate 4.0 mL/min. TLC and column chromatography were performed on precoated Si Gel F₂₅₄ plates (Merck, art. 5715), RP-18 F₂₅₄ plates (Merck, art. 15389) and silica gel 60 (40 - 63 and 63 - 200 µm, Merck), MCI gel CHP20P (75 - 150 µm, Mitsubishi Chemical Co.), Sephadex LH-20 (25 - 100 µm, Sigma), LiChroprep RP-18 (40 - 63 µm, Merck).

Plant material – The aerial parts of *Aster yomena* Makino (Asteraceae) were collected from the Herbarium of the College of Pharmacy, Chosun University, Korea, in September 2003 and identified by Prof. E.-R. Woo, one of authors of this paper. A voucher specimen was deposited in the Herbarium of the College of Pharmacy, Chosun University (CSU-1029-17).

Extraction and Isolation – The air-dried aerial parts of *A. yomena* (1.9 kg) were extracted with MeOH three times at room temperature, and 120 g of residue were produced. The MeOH extract was suspended in H₂O and partitioned sequentially in CH₂Cl₂, EtOAc, and *n*-BuOH. The CH₂Cl₂ fraction (15 g) was chromatographed over a silica gel column using a gradient solvent system of hexane:acetone (100 : $1 \rightarrow 1 : 1$) to yield twelve subfractions D1~D12. The D3 fraction (320 mg) was chromatographed over a silica gel column using a gradient solvent system of hexane:acetone (30 : $1 \rightarrow 1 : 1$) to yield three subfractions D31~D33. Subfraction D31 (42 mg) was subjected to RP-18 CC eluting with 99% MeOH to yield six subfractions, D311~D316. D314 and D315 (15.2 mg)

Eun-Rhan Woo, College of Pharmacy, Chosun University, 375 Seosuk-dong, Dong-gu, Gwangju, 501-759, Republic of Korea Tel: +82-62-230-6369; E-mail: wooer@chosun.ac.kr

were purified by silica gel CC (hexane : EtOAc = 2:1) to yield compound 1 (1.7 mg) and compound 2 (4.3 mg), respectively. The D5 fraction (800 mg) was chromatographed over a silica gel column using a gradient solvent system of hexane : acetone $(10: 1 \rightarrow 1: 1)$ to yield three subfractions D51~D53. Subfraction D52 (286 mg) was subjected to RP-18 CC eluting with 99% MeOH to yield eight subfractions, D521~D528. D523, D524 and D528 (110 mg) were purified by silica gel CC (hexane: aceton = 10:1) to yield compound 3 (4.8 mg), compound 4 (73 mg) and compound 5 (6 mg), respectively. Subfraction D10 (1.7 g) was subjected to RP-18 CC eluting with 100% MeOH to yield four subfractions, D101~D104. Subfraction D101 (850 mg) was subjected to silica gel CC eluting with a gradient solvent system of CHCl₃: MeOH (100 : 1 \rightarrow 100% MeOH) to yield four subfractions, D1011~D1014. D1013 (160 mg) was purified by RP-18 CC (80% MeOH) to yield compound 6 (1.9 mg). Subfraction D11 (2.5 g) was subjected to YMC Sep-Pack eluting with 50% MeOH, 80% MeOH, 100% MeOH to vield three subfractions, D111~D113. Subfraction D112 (900 mg) was subjected to RP-18 CC eluting with 50% MeOH to yield four subfractions, D1121~D1124. D1124 (158 mg) was purified by silica gel CC (hexane : EtOAc =10:1) and Semi-prep HPLC (60% MeOH) to yield compound 7 (1.5 mg) and compound 8 (1.9 mg). Subfraction D113 (900 mg) was subjected to silica gel CC eluting with a gradient solvent system of CHCl₃: MeOH $(30:1 \rightarrow 100\%$ MeOH) to yield six subfractions, D1131~ D1136. Subfraction D1132 (581 mg) was subjected to RP-18 CC eluting with 90% MeOH to yield four subfractions, D11321~D11324. D11323 (80 mg) was purified by Semi-prep HPLC (80% MeOH) to yield compound 9 (6.2 mg).

Spinasterone (1) – White powder; $[\alpha]_D^{25}$: +23° (CHCl₃, c = 0.05); EI-MS m/z: 410 [M⁺]; ¹H NMR (500 MHz, $CDCl_3$) δ : 5.18 (1H, br s, H-7), 5.16 (1H, dd, J = 8.5, 15.2Hz, H-22), 5.03 (1H, dd, J=8.8, 15.3 Hz, H-23), 1.04 (3H, d, J=6.7 Hz, Me-21), 1.02 (3H, s, Me-19), 0.85 (3H, d, J = 6.7 Hz, Me-26), 0.81 (3H, t, J = 7.3 Hz, Me-29), 0.80 (3H, d, J=6.7 Hz, Me-27), 0.58 (3H, s, Me-18). ¹³C NMR (125 MHz, CDCl₃) δ: 212.1 (s, C-3), 139.5 (s, C-8), 138.1 (d, C-22), 129.5 (d, C-23), 117.0 (d, C-7), 55.8 (d, C-17), 55.0 (t, C-14), 51.2 (d, C-24), 48.8 (d, C-9), 44.2 (t, C-4), 43.2 (s, C-13), 42.8 (d, C-5), 40.8 (d, C-20), 39.3 (t, C-12), 38.7 (t, C-1), 38.1 (t, C-2), 34.4 (s, C-10), 31.9 (d, C-25), 30.0 (t, C-6), 28.5 (t, C-16), 25.4 (t, C-28), 23.0 (t.C-15), 21.7 (t, C-11), 21.4 (g, C-21), 21.1 (q, C-27), 19.0 (q, C-26), 12.5 (q, C-19), 12.3 (q, C-29), 12.1 (q, C-18).

Natural Product Sciences

Simiarenol (2) – White powder; $[\alpha]_D^{25}$: +50.8° (CHCl₃, c = 0.3); EI-MS *m/z*: 426 [M⁺]; ¹H NMR (500 MHz, CDCl₃) δ : 5.62 (1H, dt, J = 2.0, 5.9 Hz, H-6), 3.47 (1H, br s, H-3), 1.14 (3H, s, Me-24), 1.05 (3H, s, Me-23), 1.00 (3H, s, Me-26), 0.92 (3H, s, Me-27), 0.89 (3H, s, Me-25), 0.88 (3H, d, J = 6.5 Hz, Me-29), 0.83 (3H, d, J = 6.5 Hz, Me-30), 0.78 (3H, s, Me-28). ¹³C NMR (125 MHz, CDCl₃) δ : 141.9 (s, C-5), 122.0 (d, C-6), 76.3 (d, C-3), 60.0 (d, C-21), 51.7 (d, C-18), 50.2 (d, C-10), 44.2 (d, C-8), 42.8 (s, C-17), 40.8 (s, C-4), 39.3 (s, C-14), 38.6 (s, C-13), 35.4 (t, C-16), 34.8 (s, C-9), 34.1 (t, C-11), 30.8 (d, C-22), 29.0 (t, C-15), 29.0 (q, C-23), 28.9 (t, C-12), 28.3 (t, C-20), 27.7 (t, C-2), 25.5 (q, C-24), 24.0 (t, C-7), 22.9 (q, C-30), 21.9 (q, C-29), 19.9 (t, C-19), 18.0 (t, C-1), 17.8 (q, C-25), 16.1 (q, C-28), 15.7 (q, C-26), 15.0 (q, C-27).

Phytol (3) – Colorless oil; $[\alpha]_D^{25}$: +0.2° (CHCl₃, c = 0.3); EI-MS *m/z*: 296 [M⁺]; ¹H NMR (500 MHz, CDCl₃) δ : 5.30 (1H, td, J = 7.0, 1.2 Hz, H-2), 4.16 (2H, d, J = 6.8 Hz, H-1), 1.67 (3H, s, Me-3a), 0.86 (12H, d, J = 6.6 Hz, Me-7a, 11a, 15a, 16), ¹³C NMR (125 MHz, CDCl₃) δ : 140.3 (s, C-3), 123.0 (d, C-2), 59.4 (t, C-1), 39.9 (t, C-4), 39.3 (t, C-14), 37.4 (t, C-6), 37.3 (t, C-12), 37.3 (t, C-8), 36.6 (t, C-10), 32.8 (d, C-11), 32.7 (d, C-7), 28.0 (d, C-15), 25.1 (t, C-5), 24.8 (t, C-13), 24.5 (t, C-9), 22.7 (q, C-15a), 22.6 (q, C-16), 19.7 (q, C-11a), 19.7 (q, C-7a), 16.2 (q, C-3a).

Lupeol (4) – Colorless needles; $[\alpha]_D^{25}$: +28.1° (CHCl₃, c = 0.5; EI-MS m/z: 426 [M⁺]; ¹H NMR (500 MHz, $CDCl_3$) δ : 4.69 (1H, br d, J = 2.4 Hz, H-29b), 4.57 (1H, dd, J=1.2, 2.4 Hz, H-29a), 3.19 (1H, dd, J=5.1, 10.6 Hz, H-3), 2.38 (1H, m, H-19), 1.68 (3H, br s, Me-30), 1.03 (3H, s, Me-26), 0.97 (3H, s, Me-27), 0.94 (3H, s, Me-24), 0.83 (3H, s, Me-25), 0.79 (3H, s, Me-23), 0.76 (3H, s, Me-28); ¹³C NMR (125 MHz, CDCl₃) δ: 150.9 (s, C-20), 109.3 (t, C-29), 79.0 (d, C-3), 55.3 (d, C-5), 50.4 (d, C-9), 48.3 (d, C-19), 48.0 (d, C-18), 43.0 (s, C-17), 42.8 (s, C-14), 40.8 (s, C-8), 40.0 (t, C-22), 38.8 (s, C-4), 38.7 (t, C-1), 38.0 (d, C-13), 37.1 (s, C-10), 35.6 (t, C-16), 34.2 (t, C-7), 29.8 (t, C-21), 28.0 (q, C-23), 27.4 (t, C-2), 27.3 (q, C-15), 25.1 (t, C-12), 20.9 (t, C-11), 19.3 (q, C-30), 18.3 (d, C-6), 18.0 (q, C-28), 16.1 (q, C-25), 15.9 (q, C-26), 15.4 (q, C-24), 14.5 (q, C-27).

α-Amyrin (5) – Colorless needles; $[α]_D^{20}$: +83.5° (CHCl₃, c = 0.3); EI-MS m/z: 426 [M⁺]; ¹H NMR (300 MHz, CDCl₃) δ: 5.13 (1H, t, J = 4.0 Hz, H-12), 3.22 (1H, m, H-3), 1.07, 1.00, 0.99, 0.95, 0.79, 0.79 (each 3H, s, Me-27, 26, 23, 25, 24, 28), 0.91 (3H, d, J = 5.4 Hz, Me-30), 0.78 (3H, d, J = 5.4 Hz, Me-29); ¹³C NMR (75 MHz, CDCl₃) δ: 139.8 (s, C-13), 124.6 (d, C-29), 79.3 (d, C-3), 59.3 (d, C-18), 55.4 (d, C-5), 47.9 (d, C-9), 42.3 (s, C-14), 41.7 (t, C-22), 40.2 (s, C-8), 39.9 (d, C-19), 39.8 (d, C-20), 39.0 (t and s, C-1, 4), 37.1 (s, C-10), 38.0 (d, C-13), 34.0 (s, C-17), 33.1 (t, C-7), 31.5 (t, C-21), 29.0 (q, C-28), 28.3 (q, C-16), 28.3 (q, C-23), 27.5 (t, C-2), 26.8 (t, C-15), 23.6 (t, C-11), 23.5 (q, C-27), 21.6 (q, C-30), 18.6 (t, C-6),17.7 (q, C-29), 17.1 (q, C-26), 15.9 (q, C-24), 15.9 (q, C-24), 15.9 (q, C-25).

1β,4β-Dihydroxyeudesman-11-ene (6) – Colorless oil; $[α]_D^{17}$: -29° (CHCl₃, c = 0.05); EI-MS m/z: 238 [M⁺]; ¹H NMR (600 MHz, CDCl₃) δ: 4.74 (1H, m, H-12a), 4.71 (1H, m, H-12b), 3.27 (1H, dd, J = 4.8, 11.4 Hz, H-1), 1.76 (3H, s, Me-13), 1.16 (3H, s, Me-15), 1.05 (3H, s, Me-14); ¹³C NMR (150 MHz, CDCl₃) δ: 150.5 (s, C-11), 108.6 (t, C-12), 79.7 (d, C-1), 71.4 (s, C-4), 50.4 (d, C-5), 46.1 (d, C-7), 39.4 (t, C-3), 39.3 (t, C-9), 38.9 (s, C-10), 30.0 (q, C-15), 26.8 (t, C-8), 26.4 (t, C-6), 25.6 (t, C-2), 20.8 (q, C-13), 12.6 (q, C-14).

3,7-Dihydroxyhumula-4,8(15),10(*E***)-triene (7)** – Colorless oil; $[\alpha]_D{}^{20}$: +9.3° (MeOH, *c* = 0.06); EI-MS *m/z*: 236 [M⁺]; ¹H NMR (600 MHz, CD₃OD) δ : 5.16 (1H, br s, H-15a), 4.99 (1H, br s, H-15b), 5.08 (1H, d, *J* = 18 Hz, H-11), 5.07 (1H, t, *J* = 7.8 Hz, H-5), 4.88 (1H, m, H-10), 4.07 (1H, dd, *J* = 2.1, 11.4, Hz, H-3), 3.87 (1H, dd, *J* = 4.0, 10.5 Hz, H-7), 1.57 (3H, br s, Me-14), 1.13 (3H, s, Me-12), 0.96 (3H, s, Me-13); ¹³C NMR (150 MHz, CD₃OD) δ : 153.9 (s, C-8), 141.0 (s, C-4), 139.8 (d, C-11), 125.9 (d, C-5), 125.9 (d, C-10), 112.4 (t, C-15), 76.5 (d, C-3), 73.6 (d, C-7), 47.4 (t, C-2), 42.4 (t, C-9), 38.1 (t, C-6), 36.0 (s, C-1), 33.3 (q, C-13), 24.3 (q, C-14), 10.5 (q, C-12).

2,6-Dihydroxyhumula-3(12),7(13),9*E***-triene (8)** – Colorless oil; $[\alpha]_D^{20}$: +4.3° (MeOH, *c* = 0.05); EI-MS *m*/*z*: 236 [M⁺]; ¹H NMR (600 MHz, CD₃OD) δ : 5.41 (1H, d, *J* = 15.9 Hz, H-10), 5.34 (1H, m, H-9), 5.11 (1H, br s, H-12a), 4.86 (1H, br s, H-12b), 5.08 (1H, br s, H-13a), 4.94 (1H, br s, H-13b), 3.99 (1H, dd, *J* = 5.2, 8.3 Hz, H-6), 3.91 (1H, dd, *J* = 2.0, 6.3, Hz, H-2), 1.12 (3H, s, H-15), 1.00 (3H, s, H-14); ¹³C NMR (150 MHz, CD₃OD) δ : 153.8 (s, C-3), 151.1 (s, C-7), 142.7 (d, C-10), 125.9 (d, C-9), 114.8 (t, C-13), 109.9 (t, C-12), 76.7 (d, C-6), 69.7 (d, C-2), 52.0 (t, C-1), 10.5 (q, C-12), 36.5 (s, C-11), 36.5 (t, C-8), 34.8 (t, C-5), 32.0 (t, C-4), 31.4 (q, C-14), 24.2 (q, C-15).

23-Hydroxybetulin (9) – Colorless needles; $[\alpha]_D^{20}$: +50.5° (MeOH, c = 0.05); EI-MS m/z: 426 [M⁺]; ¹H NMR (500 MHz, CD₃OD) δ : 4.69 (1H, br s, H-29a), 4.57 (1H, br s, H-29b), 3.74 (1H, d, J = 10.8 Hz, H-28a), 3.28 (1H, d, J = 10.8 Hz, H-28b), 3.51 (1H, d, J = 10.9 Hz, H-23a), 3.28 (1H, d, J = 10.9 Hz, H-23b), 3.57 (1H, dd, J = 5.1, 10.6 Hz, H-3), 2.41 (1H, ddd, J = 6.0, 10.8, 10.8 Hz, H-19), 1.69 (3H, s, Me-30), 1.07 (3H, s, Me-26), 1.02 (3H, s, Me-27), 0.89 (3H, s, Me-25), 0.68 (3H, s, Me-24); ¹³C NMR (125 MHz, CD₃OD) δ : 152.0 (s, C-20), 110.4 (t, C-29), 74.0 (d, C-3), 67.5 (t, C-23), 60.5 (t, C-28), 51.9 (d, C-9), 50.2 (d, C-18), 49.4 (d, C-19), 49.1 (d, C-5), 48.3 (d, C-19), 44.0 (s, C-14), 43.5 (s, C-4), 42.2 (s, C-8), 39.9 (t, C-1), 38.8 (d, C-13), 38.2 (s, C-10), 35.24 (t, C-16), 35.1 (t, C-7), 31.0 (t, C-21), 30.5 (t, C-15), 28.3 (t, C-16), 27.8 (t, C-2), 26.8 (t, C-12), 22.1 (t, C-11), 19.5 (d, C-30), 19.2 (t, C-6), 17.2 (q, C-25), 16.7 (q, C-26), 15.4 (q, C-27), 12.7 (q, C-24).

Results and Discussion

Repeated column chromatography of the CH_2Cl_2 soluble fraction of the aerial parts of *A. yomena* yielded nine terpenoids (**1** - **9**) (Fig. 1).

Compound 1 was obtained as white powder. It exhibited a mass peak at m/z 410 [M]⁺ corresponding to the molecular formula $C_{29}H_{46}O$ in the EI-MS spectrum. The ¹H NMR spectrum of **1** showed six methyl group protons at $\delta_H 1.04$ (3H, d, J=6.7 Hz, Me-21), 1.02 (3H, s, Me-19), 0.85 (3H, d, J = 6.7 Hz, Me-26), 0.81 (3H, t, J = 7.3 Hz, Me-29), 0.80 (3H, d, J = 6.7 Hz, Me-27) and 0.58 (3H, s, Me-18); three olefinic protons at $\delta_{\rm H}$ 5.18 (1H, br s, H-7), 5.16 (1H, dd, J=8.5, 15.2 Hz, H-22) and 5.03 (1H, dd, J = 8.8, 15.2 Hz, H-23). In the ¹³C NMR spectrum, 29 carbon signals were observed, including one carbonyl carbon at $\delta_{\rm C}$ 198.7, one olefinic quaternary carbon at $\delta_{\rm C}$ 139.5, three olefinic methine carbons at $\delta_{\rm C}$ 138.1, 129.5 and 117.0. From these results, compound 1 was indicated to be a steroid skeleton. Accordingly, compound 1 was determined as spinasterone on the basis of the above evidences, together with a comparison of the above data with those published in the literature (Akihisa et al., 1999; Ling et al., 2010).

Compound 2 was obtained as white powder. It exhibited a mass peak at m/z 426 [M]⁺ corresponding to the molecular formula $C_{30}H_{50}O$ in the EI-MS spectrum. The ¹H NMR spectrum of **2** showed eight methyl group protons at $\delta_{\rm H}$ 1.14 (3H, s, Me-24), 1.05 (3H, s, Me-23), 1.00 (3H, s, Me-26), 0.92 (3H, s, Me-27), 0.89 (3H, s, Me-25), 0.88 (3H, d, J=6.5 Hz, Me-29), 0.83 (3H, d, J = 6.5 Hz, Me-30) and 0.78 (3H, s, Me-28); one olefinic proton at $\delta_{\rm H}$ 5.62 (1H, dt, J = 2.0, 5.9 Hz, H-6); one oxygenated methine proton at $\delta_H 3.47$ (1H, br s, H-3). In the ¹³C NMR spectrum, 30 carbon signals were observed, including one oxygenated carbon at δ_C 76.3, one olefinic quaternary carbon at $\delta_{\rm C}$ 141.9, one olefinic methine carbon at $\delta_{\rm C}$ 122.0. From these results, compound 2 was indicated to be a triterpenoid skeleton. Accordingly, compound 2 was determined as similar on the basis of

Natural Product Sciences

Fig. 1. Chemical structures of compounds 1 - 9.

the above evidences, together with a comparison of the above data with those published in the literature (Tanaka *et al.*, 1989).

Compound 3 was obtained as colorless oil. It exhibited a mass peak at m/z 296 [M]⁺ corresponding to the molecular formula C₂₀H₄₀O in the EI-MS spectrum. The ¹H NMR spectrum of **3** showed five methyl group protons at δ_H 1.67 (3H, s, Me-3a) and 0.86 (12H, d, J = 6.6 Hz, Me-7a, 11a, 15a, 16); one olefinic proton at $\delta_{\rm H}$ 5.30 (1H, td, J = 1.2, 7.0 Hz, H-2); one oxygenated methylene proton at $\delta_{\rm H}$ 4.16 (2H, d, J = 6.8 Hz, H-1). In the ¹³C NMR spectrum, 20 carbon signals were observed, including one oxygenated carbon at δ_C 59.4, one olefinic quaternary carbon at $\delta_{\rm C}$ 140.3, one olefinic methine carbon at $\delta_{\rm C}$ 123.0. From these results, compound **3** was indicated to be a diterpene skeleton. Accordingly, compound 3 was determined as phytol on the basis of the above evidences, together with a comparison of the above data with those published in the literature (Brownstein et al., 1989).

Compound 4 was obtained as colorless needles. It exhibited a mass peak at m/z 426 [M]⁺ corresponding to the molecular formula C₃₀H₅₀O in the EI-MS spectrum. The ¹H NMR spectrum of **4** showed seven methyl group protons at δ_{H} 1.68 (3H, br s, Me-30), 1.03 (3H, s, Me-26), 0.97 (3H, s, Me-27), 0.94 (3H, s, Me-24), 0.83 (3H, s, Me-25), 0.79 (3H, s, Me-23) and 0.76 (3H, s, Me-28); two vinylic protons of terminal methylene group at δ_H 4.69 (1H, br d, J=2.4 Hz, H-29b) and 4.57 (1H, dd, J = 1.2, 2.4 Hz, H-29a); one oxygenated methine proton at $\delta_{\rm H}$ 3.19 (1H, dd, J = 5.1, 10.6 Hz, H-3). In the ¹³C NMR spectrum, 30 carbon signals were observed, including one exo-methylene carbon at δ_{C} 109.3; one oxygenated carbon at $\delta_{\rm C}$ 79.0. From these results, compound 4 was indicated to be a lupane type triterpenoid. Accordingly, compound 4 was determined as lupeol on the basis of the above evidences, together with a comparison of the above data with those published in the literature (Jung et al., 2008 and Fotie et al., 2006).

Compound 5 was obtained as colorless needles. It exhibited a mass peak at m/z 426 [M]⁺ corresponding to the molecular formula C₃₀H₅₀O in the EI-MS spectrum. The ¹H NMR spectrum of **5** showed six methyl group protons at $\delta_{\rm H}$ 1.07, 1.00, 0.99, 0.95, 0.79 and 0.79 (each 3H, s, Me-27, 26, 23, 25, 24, 28); two secondary methyl protons at $\delta_{\rm H}$ 0.91 (3H, d, J = 5.4 Hz, Me-30) and 0.78 (3H, d, J = 5.4 Hz, Me-29); one oxygenated methine proton at $\delta_{\rm H}$ 3.22 (1H, m, H-3). In the ¹³C NMR spectrum, 30 carbon signals were observed, including one oxygenated carbon at δ_C 79.3, one olefinic quaternary carbon at δ_C 139.8, one olefinic methine carbon at δ_C 124.6. From these results, compound 5 was indicated to be an ursane type triterpenoid. Accordingly, compound 5 was determined as α -amyrin on the basis of the above evidences, together with a comparison of the above data with those published in the literature. (Lee et al., 2003)

Compound 6 was obtained as colorless oil. It exhibited a mass peak at m/z 296 [M]⁺ corresponding to the molecular formula C₂₀H₄₀O in the EI-MS spectrum. The ¹H NMR spectrum of **6** showed three methyl group protons at $\delta_{\rm H}$ 1.76 (3H, s, Me-13), 1.16 (3H, s, Me-15) and 1.05 (3H, s, Me-14); two vinylic protons of terminal methylene group at $\delta_{\rm H}$ 4.74 (1H, m, H-12a) and 4.71 (1H, m, H-12b); one oxygenated methine proton at $\delta_{\rm H}$ 3.27 (1H, dd, J = 4.8, 11.4 Hz, H-1). In the ¹³C NMR spectrum, 15 carbon signals were observed, including two oxygenated carbon at δ_C 79.7 and 71.4; one exo-methylene carbon at $\delta_{\rm C}$ 108.6. From these results, compound **6** was indicated to be an eudesmane type sesquiterpenoid. Accordingly, compound **6** was determined as 1β , 4β dihydroxyeudesman-11-ene on the basis of the above evidences, together with a comparison of the above data with those published in the literature. (Li et al., 2005)

Compound 7 was obtained as colorless oil. It exhibited a mass peak at m/z 236 [M]⁺ corresponding to the molecular formula $C_{15}H_{24}O_2$ in the EI-MS spectrum. The ¹H NMR spectrum of 7 showed three methyl group protons at $\delta_{\rm H}$ 1.57 (3H, br s, Me-14), 1.13 (3H, s, Me-12) and 0.96 (3H, s, Me-13); two vinylic protons of terminal methylene group at δ_H 5.16 (1H, br s, H-15a) and 4.99 (1H, br s, H-15b); three olefinic protons at $\delta_{\rm H}$ 5.08 (1H, d, J = 18.0 Hz, H-11), 4.88 (1H, m, H-10) and 5.07 (1H, t, J = 7.8 Hz, H-5); two oxygenated methine protons at $\delta_{\rm H}$ 4.07 (1H, dd, J = 2.1, 11.4 Hz, H-3) and 3.87 (1H, dd, J = 4.0, 10.5 Hz, H-7). In the ¹³C NMR spectrum, 15 carbon signals were observed, including two oxygenated carbons at $\delta_{\rm C}$ 76.5 and 73.6; one exo-methylene carbon at δ_{C} 112.4; one olefinic quaternary carbon at δ_{C} 141.0; three olefinic methine carbons at $\delta_{\rm C}$ 139.8, 125.9 and 125.9.

From these results, compound 7 was indicated to be a humulane type sesquiterpenoid. Accordingly, compound 7 was determined as 3,7-dihydroxyhumula-4,8(15),10(E)-triene on the basis of the above evidences, together with a comparison of the above data with those published in the literature (Smith *et al.*, 1991; Xu *et al.*, 2004).

Compound 8 was obtained as colorless oil. It exhibited a mass peak at m/z 236 [M]⁺ corresponding to the molecular formula $C_{15}H_{24}O_2$ in the EI-MS spectrum. Its ¹H, ¹³C NMR spectra was quite similar to those of compound 7. But, the ¹H-NMR spectrum of 8 showed two methyl group protons at δ_H 1.12 (3H, s, Me-15) and 1.00 (3H, s, Me-14); two vinylic protons of terminal methylene group at $\delta_{\rm H}\,5.11$ (1H, br s, H-12a) and 4.86 (1H, br s, H-12b), two more vinylic protons of terminal methylene group at $\delta_{\rm H}$ 5.08 (1H, br s, H-13a) and 4.94 (1H, br s, H-13b); two olefinic protons at $\delta_{\rm H} \delta 5.41$ (1H, d, J = 15.9 Hz, H-10) and 5.34 (1H, m, H-9); another two oxygenated methine protons at $\delta_{\rm H}$ 3.91 (1H, dd, J = 2.0, 6.3 Hz, H-2) and 3.99 (1H, dd, J = 5.2, 8.3, H-6). In the ¹³C NMR spectrum, 15 carbon signals were observed, including two oxygenated carbons at $\delta_{\rm C}$ 69.7 and 76.7; two exo-methylene carbons at δ_C 109.9 and 114.8; two olefinic methine carbons at δ_{C} 142.7 and 125.9. From these results, compound ${\bf 8}$ was indicated to be a humulane type sesquiterpenoid. Accordingly, compound 8 was determined as 2,6-dihydroxyhumula-3(12),7(13),9E-triene on the basis of the above evidences, together with a comparison of the above data with those published in the literature. (Li et al., 2007)

Compound 9 was obtained as colorless needles. It exhibited a mass peak at m/z 458 [M]⁺ corresponding to the molecular formula $C_{30}H_{50}O_3$ in the EI-MS spectrum. Its NMR spectrum pattern was quite similar to those of compound 4. The ¹H NMR spectrum of 9 showed five methyl group protons at δ_H 1.69 (3H, s, Me-30), 1.07 (3H, s, Me-26), 1.02 (3H, s, Me-27), 0.89 (3H, s, Me-25) and 0.68 (3H, s, Me-24); two vinylic protons of terminal methylene group at $\delta_{\rm H}\,4.69$ (1H, br s, H-29a) and 4.57 (1H, br s, H-29b); two oxygenated methylene protons at $\delta_{\rm H}$ 3.74 (1H, d, J = 10.8 Hz, H-28a), 3.28 (1H, d, J = 10.8Hz, H-28b), 3.51 (1H, d, J=10.9 Hz, H-23a) and 3.28 (1H, d, J = 10.9 Hz, H-23b); one oxygenated methine proton at $\delta_{\rm H}$ 3.57 (1H, dd, J = 5.1, 10.6 Hz, H-3). In the ¹³C NMR spectrum, 30 carbon signals were observed, including one exo-methylene carbon at δ_C 110.4; three oxygenated carbons at δ_C 74.0, 67.5 and 60.5. From these results, compound 9 was indicated to be a lupane type triterpenoid. Accordingly, compound 9 was determined as 23-hydroxybetulin on the basis of the above evidences,

Natural Product Sciences

together with a comparison of the above data with those published in the literature (Guerrero-Analco *et al.*, 2010).

In this study, nine terpenoids were isolated from A. *yomena*. To the best of our knowledge, these compounds were isolated from this plant for the first time.

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2012R1A1A3005531).

References

- Ahn, D.K., Illustrated Book of Korean Medicinal Herbs; Kyo-Hak Publishing, Seoul, pp. 64-64, 1998.
- Akihisa, T., Kimura, Y., Tai, T., and Arai, K., Astertarone B, a hydroxytriterpenoid ketone from the roots of *Aster tataricus* L. *Chem. Pharm. Bull.* 47, 1161-1163 (1999).
- Brownstein, S., Burton, G.W., Hughes, L., and Ingold, K.U., Chiral effects on the ¹³C resonances of α-tocopherol and related compounds. A novel illustration of Newman's "Rule of Six" *J. Org. Chem.* **54**, 560-569 (1989).
- Fotie, J., Bohle, D.S., Leimanis, M.L., Georges, E., Rukunga, G., and Nkengfack, A.E., Lupeol long-chain fatty acid esters with antimalarial activity from *Holarrhena floribunda*. J. Nat. Prod. 69, 62-67 (2006).
- Guerrero-Analco, J.A., Martineau, L., Saleem, A., Madiraju, P., Muhammad, A., Durst, T., Haddad, P., and Arnason, J.T., Bioassayguided isolation of the antidiabetic principle from *Sorbus decora* (Rosaceae) used traditionally by the eeyou istchee cree first nations. J.

Nat. Prod. 73, 1519-1523 (2010).

- Jin, Q., Jin, H.-G., Kim, A.R., and Woo, E.-R., A new megastigmane palmitate and a new oleanane triterpenoid from *Aster yomena* Makino. *Helv. Chim. Acta.* 95, 1455-1460 (2012).
- Jung, H.S., Lee, E.J., Lee, J.-H., Kim, J.S., and Kang, S.S., Phytochemical studies on *Astragalus* root (3)-triterpenoids and sterols. *Kor. J. Pharmacogn.* **39**, 186-193 (2008).
- Lee, T.B., Illustrated Flora of Korea, Hyang-Moon Publishing, Seoul, pp. 737-737, 1993.
- Lee, S., Kim, K.S., Shim, S.H., Park, Y.M., and Kim, B.-K., Constituents from the non-polar fraction of *Artemisia apiacea*. Arch. Pharm. Res. 26, 902-905 (2003).
- Li, H., Luo, Y., He, Z., and Zhang, G., Chemical constituents from Lonicera saccata. Chin. J. Appl. Environ. Biol. 13, 188-191 (2007).
- Li, X., Yang, M., Han, Y.-F., and Gao, K., New sesquiterpenes from *Erigeron anus. Planta Med.* **71**, 268-272 (2005).
- Ling, T.-J., Wan, X.-C., Ling, W.-W., Zhang, Z.-Z., Xia, T., Li, D.-X., and Hou, R.-Y., New triterpenoids and other constituents from a special microbial-fermented tea-fuzhuan brick tea. *J. Agric. Food Chem.* 58, 4945-4950 (2010).
- Smith, R.J., Mahiou, B., and Deinzer, M.L., Hydrolysis products of humulene diepoxide A. *Tetrahedron* 47, 933-940 (1991).
- Tanaka, R., Matsunaga, S., and Ishida, T., Four novel 3, 4-secotriterpenoids, espinendiols A and B, espinenoxide and trisnorisoespinenoxide from *Euphorbia supina*. *Tetrahedron Lett.* **30**, 1661-1664 (1989).
- Xu, F., Morikawa, T., Matsuda, H., Ninomiya, K., and Yoshikawa, M., Structures of new sesquiterpenes and hepatoprotective constituents from the egyptian herbal medicine *Cyperus longus*. J. Nat. Prod. 67, 569-576 (2004).

Received June 25, 2013 Revised August 7, 2013 Accepted August 20, 2013