DOI QR코드

DOI QR Code

Comparative Viral Metagenomics of Environmental Samples from Korea

  • Kim, Min-Soo (Department of Life and Nanopharmaceutical Science and Department of Biology, Kyung Hee University) ;
  • Whon, Tae Woong (Department of Life and Nanopharmaceutical Science and Department of Biology, Kyung Hee University) ;
  • Bae, Jin-Woo (Department of Life and Nanopharmaceutical Science and Department of Biology, Kyung Hee University)
  • Received : 2013.05.15
  • Accepted : 2013.08.20
  • Published : 2013.09.30

Abstract

The introduction of metagenomics into the field of virology has facilitated the exploration of viral communities in various natural habitats. Understanding the viral ecology of a variety of sample types throughout the biosphere is important per se, but it also has potential applications in clinical and diagnostic virology. However, the procedures used by viral metagenomics may produce technical errors, such as amplification bias, while public viral databases are very limited, which may hamper the determination of the viral diversity in samples. This review considers the current state of viral metagenomics, based on examples from Korean viral metagenomic studies-i.e., rice paddy soil, fermented foods, human gut, seawater, and the near-surface atmosphere. Viral metagenomics has become widespread due to various methodological developments, and much attention has been focused on studies that consider the intrinsic role of viruses that interact with their hosts.

Keywords

References

  1. Mokili JL, Rohwer F, Dutilh BE. Metagenomics and future perspectives in virus discovery. Curr Opin Virol 2012;2:63-77. https://doi.org/10.1016/j.coviro.2011.12.004
  2. Rohwer F, Prangishvili D, Lindell D. Roles of viruses in the environment. Environ Microbiol 2009;11:2771-2774. https://doi.org/10.1111/j.1462-2920.2009.02101.x
  3. Willner D, Hugenholtz P. From deep sequencing to viral tagging: recent advances in viral metagenomics. Bioessays 2013; 35:436-442. https://doi.org/10.1002/bies.201200174
  4. Rohwer F, Edwards R. The Phage Proteomic Tree: a genome- based taxonomy for phage. J Bacteriol 2002;184:4529- 4535. https://doi.org/10.1128/JB.184.16.4529-4535.2002
  5. Rosario K, Breitbart M. Exploring the viral world through metagenomics. Curr Opin Virol 2011;1:289-297. https://doi.org/10.1016/j.coviro.2011.06.004
  6. Edwards RA, Rohwer F. Viral metagenomics. Nat Rev Microbiol 2005;3:504-510. https://doi.org/10.1038/nrmicro1163
  7. Delwart EL. Viral metagenomics. Rev Med Virol 2007;17: 115-131. https://doi.org/10.1002/rmv.532
  8. Breitbart M, Salamon P, Andresen B, Mahaffy JM, Segall AM, Mead D, et al. Genomic analysis of uncultured marine viral communities. Proc Natl Acad Sci U S A 2002;99:14250-14255. https://doi.org/10.1073/pnas.202488399
  9. Whon TW, Kim MS, Roh SW, Shin NR, Lee HW, Bae JW. Metagenomic characterization of airborne viral DNA diversity in the near-surface atmosphere. J Virol 2012;86:8221-8231. https://doi.org/10.1128/JVI.00293-12
  10. Kim KH, Chang HW, Nam YD, Roh SW, Kim MS, Sung Y, et al. Amplification of uncultured single-stranded DNA viruses from rice paddy soil. Appl Environ Microbiol 2008;74:5975- 5985. https://doi.org/10.1128/AEM.01275-08
  11. Park EJ, Kim KH, Abell GC, Kim MS, Roh SW, Bae JW. Metagenomic analysis of the viral communities in fermented foods. Appl Environ Microbiol 2011;77:1284-1291. https://doi.org/10.1128/AEM.01859-10
  12. Kim KH, Bae JW. Amplification methods bias metagenomic libraries of uncultured single-stranded and double-stranded DNA viruses. Appl Environ Microbiol 2011;77:7663-7668. https://doi.org/10.1128/AEM.00289-11
  13. Kim MS, Park EJ, Roh SW, Bae JW. Diversity and abundance of single-stranded DNA viruses in human feces. Appl Environ Microbiol 2011;77:8062-8070. https://doi.org/10.1128/AEM.06331-11
  14. Thurber RV, Haynes M, Breitbart M, Wegley L, Rohwer F. Laboratory procedures to generate viral metagenomes. Nat Protoc 2009;4:470-483. https://doi.org/10.1038/nprot.2009.10
  15. Li L, Kapoor A, Slikas B, Bamidele OS, Wang C, Shaukat S, et al. Multiple diverse circoviruses infect farm animals and are commonly found in human and chimpanzee feces. J Virol 2010;84:1674-1682. https://doi.org/10.1128/JVI.02109-09
  16. Lopez-Bueno A, Tamames J, Velazquez D, Moya A, Quesada A, Alcami A. High diversity of the viral community from an Antarctic lake. Science 2009;326:858-861. https://doi.org/10.1126/science.1179287
  17. Blinkova O, Victoria J, Li Y, Keele BF, Sanz C, Ndjango JB, et al. Novel circular DNA viruses in stool samples of wild-living chimpanzees. J Gen Virol 2010;91(Pt 1):74-86. https://doi.org/10.1099/vir.0.015446-0
  18. Ng TF, Manire C, Borrowman K, Langer T, Ehrhart L, Breitbart M. Discovery of a novel single-stranded DNA virus from a sea turtle fibropapilloma by using viral metagenomics. J Virol 2009;83:2500-2509. https://doi.org/10.1128/JVI.01946-08
  19. Li L, Shan T, Soji OB, Alam MM, Kunz TH, Zaidi SZ, et al. Possible cross-species transmission of circoviruses and cycloviruses among farm animals. J Gen Virol 2011;92(Pt 4): 768-772. https://doi.org/10.1099/vir.0.028704-0
  20. Rosario K, Duffy S, Breitbart M. Diverse circovirus-like genome architectures revealed by environmental metagenomics. J Gen Virol 2009;90(Pt 10):2418-2424. https://doi.org/10.1099/vir.0.012955-0
  21. Breitbart M, Hewson I, Felts B, Mahaffy JM, Nulton J, Salamon P, et al. Metagenomic analyses of an uncultured viral community from human feces. J Bacteriol 2003;185:6220-6223. https://doi.org/10.1128/JB.185.20.6220-6223.2003
  22. Gilbert JA, Zhang K, Neufeld JD. Multiple displacement amplification. In: Handbook of Hydrocarbon and Lipid Microbiology (Kenneth N, ed.). Berlin: Springere-Verlag, 2010. pp. 4255-4263.
  23. Angly FE, Felts B, Breitbart M, Salamon P, Edwards RA, Carlson C, et al. The marine viromes of four oceanic regions. PLoS Biol 2006;4:e368. https://doi.org/10.1371/journal.pbio.0040368
  24. Culley AI, Lang AS, Suttle CA. Metagenomic analysis of coastal RNA virus communities. Science 2006;312:1795-1798. https://doi.org/10.1126/science.1127404
  25. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res 2011;39:D32-D37. https://doi.org/10.1093/nar/gkq1079
  26. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403-410.
  27. Kerfeld CA, Scott KM. Using BLAST to teach "E-value-tionary" concepts. PLoS Biol 2011;9:e1001014. https://doi.org/10.1371/journal.pbio.1001014
  28. Wooley JC, Ye Y. Metagenomics: facts and artifacts, and computational challenges. J Comput Sci Technol 2009;25:71-81.
  29. Reyes A, Haynes M, Hanson N, Angly FE, Heath AC, Rohwer F, et al. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature 2010;466:334-338. https://doi.org/10.1038/nature09199
  30. Kristensen DM, Mushegian AR, Dolja VV, Koonin EV. New dimensions of the virus world discovered through metagenomics. Trends Microbiol 2010;18:11-19. https://doi.org/10.1016/j.tim.2009.11.003
  31. Rosario K, Nilsson C, Lim YW, Ruan Y, Breitbart M. Metagenomic analysis of viruses in reclaimed water. Environ Microbiol 2009;11:2806-2820. https://doi.org/10.1111/j.1462-2920.2009.01964.x
  32. Yin Y, Fischer D. Identification and investigation of ORFans in the viral world. BMC Genomics 2008;9:24. https://doi.org/10.1186/1471-2164-9-24
  33. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature 2007; 449:804-810. https://doi.org/10.1038/nature06244
  34. Reyes A, Semenkovich NP, Whiteson K, Rohwer F, Gordon JI. Going viral: next-generation sequencing applied to phage populations in the human gut. Nat Rev Microbiol 2012;10: 607-617. https://doi.org/10.1038/nrmicro2853
  35. Patel A, Noble RT, Steele JA, Schwalbach MS, Hewson I, Fuhrman JA. Virus and prokaryote enumeration from planktonic aquatic environments by epifluorescence microscopy with SYBR Green I. Nat Protoc 2007;2:269-276. https://doi.org/10.1038/nprot.2007.6
  36. Foxman EF, Iwasaki A. Genome-virome interactions: examining the role of common viral infections in complex disease. Nat Rev Microbiol 2011;9:254-264. https://doi.org/10.1038/nrmicro2541
  37. Hurst CJ, Murphy PA. The transmission and prevention of in fectious disease. In: Modeling Disease Transmission and Its Prevention by Disinfection (Hurst CJ, ed.). Cambridge: Cambridge University Press, 1996. pp. 3-54.
  38. Sattar SA, Ijaz MK, Gerba CP. Spread of viral infections by aerosols. Crit Rev Environ Control 1987;17:89-131. https://doi.org/10.1080/10643388709388331
  39. Humblot C, Guyot JP. Pyrosequencing of tagged 16S rRNA gene amplicons for rapid deciphering of the microbiomes of fermented foods such as pearl millet slurries. Appl Environ Microbiol 2009;75:4354-4361. https://doi.org/10.1128/AEM.00451-09
  40. Roh SW, Kim KH, Nam YD, Chang HW, Park EJ, Bae JW. Investigation of archaeal and bacterial diversity in fermented seafood using barcoded pyrosequencing. ISME J 2010;4:1-16. https://doi.org/10.1038/ismej.2009.83
  41. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010;464:59-65. https://doi.org/10.1038/nature08821
  42. Womack AM, Bohannan BJ, Green JL. Biodiversity and biogeography of the atmosphere. Philos Trans R Soc Lond B Biol Sci 2010;365:3645-3653. https://doi.org/10.1098/rstb.2010.0283
  43. van Elsas JD, Jansson JK, Trevors JT. Modern Soil Microbiology. Boca Raton: CRC Press, 2007.
  44. Wommack KE, Colwell RR. Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev 2000;64:69-114. https://doi.org/10.1128/MMBR.64.1.69-114.2000
  45. Tucker KP, Parsons R, Symonds EM, Breitbart M. Diversity and distribution of single-stranded DNA phages in the North Atlantic Ocean. ISME J 2011;5:822-830. https://doi.org/10.1038/ismej.2010.188
  46. Desnues C, Rodriguez-Brito B, Rayhawk S, Kelley S, Tran T, Haynes M, et al. Biodiversity and biogeography of phages in modern stromatolites and thrombolites. Nature 2008;452: 340-343. https://doi.org/10.1038/nature06735
  47. Krupovic M, Forterre P. Microviridae goes temperate: microvirus- related proviruses reside in the genomes of Bacteroidetes. PLoS One 2011;6:e19893. https://doi.org/10.1371/journal.pone.0019893
  48. Lorincz M, Csagola A, Farkas SL, Szekely C, Tuboly T. First detection and analysis of a fish circovirus. J Gen Virol 2011;92(Pt 8):1817-1821. https://doi.org/10.1099/vir.0.031344-0
  49. Rosario K, Marinov M, Stainton D, Kraberger S, Wiltshire EJ, Collings DA, et al. Dragonfly cyclovirus, a novel single- stranded DNA virus discovered in dragonflies (Odonata: Anisoptera). J Gen Virol 2011;92(Pt 6):1302-1308. https://doi.org/10.1099/vir.0.030338-0
  50. Ng TF, Duffy S, Polston JE, Bixby E, Vallad GE, Breitbart M. Exploring the diversity of plant DNA viruses and their satellites using vector-enabled metagenomics on whiteflies. PLoS One 2011;6:e19050. https://doi.org/10.1371/journal.pone.0019050
  51. Weinbauer MG. Ecology of prokaryotic viruses. FEMS Microbiol Rev 2004;28:127-181. https://doi.org/10.1016/j.femsre.2003.08.001
  52. Deng L, Gregory A, Yilmaz S, Poulos BT, Hugenholtz P, Sullivan MB. Contrasting life strategies of viruses that infect photo- and heterotrophic bacteria, as revealed by viral tagging. MBio 2012;3:e00373-12.
  53. Suttle CA. Viruses in the sea. Nature 2005;437:356-361. https://doi.org/10.1038/nature04160
  54. Breitbart M. Marine viruses: truth or dare. Ann Rev Mar Sci 2012;4:425-448. https://doi.org/10.1146/annurev-marine-120709-142805
  55. Roossinck MJ. The good viruses: viral mutualistic symbioses. Nat Rev Microbiol 2011;9:99-108. https://doi.org/10.1038/nrmicro2491
  56. Duerkop BA, Clements CV, Rollins D, Rodrigues JL, Hooper LV. A composite bacteriophage alters colonization by an intestinal commensal bacterium. Proc Natl Acad Sci U S A 2012;109:17621-17626. https://doi.org/10.1073/pnas.1206136109
  57. Chibani-Chennoufi S, Bruttin A, Dillmann ML, Brüssow H. Phage-host interaction: an ecological perspective. J Bacteriol 2004;186:3677-3686. https://doi.org/10.1128/JB.186.12.3677-3686.2004
  58. Chen J, Novick RP. Phage-mediated intergeneric transfer of toxin genes. Science 2009;323:139-141. https://doi.org/10.1126/science.1164783
  59. Kenzaka T, Nasu M, Tani K. Transfer of a phage T4 gene into Enterobacteriaceae, determined at the single-cell level. Appl Environ Microbiol 2010;76:1274-1277. https://doi.org/10.1128/AEM.02219-09
  60. Ohno S, Okano H, Tanji Y, Ohashi A, Watanabe K, Takai K, et al. A method for evaluating the host range of bacteriophages using phages fluorescently labeled with 5-ethynyl-2'-deoxyuridine (EdU). Appl Microbiol Biotechnol 2012;95:777-788. https://doi.org/10.1007/s00253-012-4174-1
  61. Allen LZ, Ishoey T, Novotny MA, McLean JS, Lasken RS, Williamson SJ. Single virus genomics: a new tool for virus discovery. PLoS One 2011;6:e17722. https://doi.org/10.1371/journal.pone.0017722
  62. Allers E, Moraru C, Duhaime MB, Beneze E, Solonenko N, Barrero-Canosa J, et al. Single-cell and population level viral infection dynamics revealed by phageFISH, a method to visualize intracellular and free viruses. Environ Microbiol 2013; 15:2306-2318. https://doi.org/10.1111/1462-2920.12100

Cited by

  1. A Survey of Overlooked Viral Infections in Biological Experiment Systems vol.9, pp.8, 2014, https://doi.org/10.1371/journal.pone.0105348
  2. Identification of Viruses and Viroids by Next-Generation Sequencing and Homology-Dependent and Homology-Independent Algorithms vol.53, pp.1, 2015, https://doi.org/10.1146/annurev-phyto-080614-120030
  3. Metagenomic characterization of viral communities in Goseong Bay, Korea vol.51, pp.4, 2016, https://doi.org/10.1007/s12601-016-0051-7
  4. Exploring Viral Diversity in a Unique South African Soil Habitat vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-017-18461-0
  5. Overview of Trends in the Application of Metagenomic Techniques in the Analysis of Human Enteric Viral Diversity in Africa’s Environmental Regimes vol.10, pp.8, 2018, https://doi.org/10.3390/v10080429