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Gene set analysis is a powerful tool for interpreting a genome-wide association study result and is gaining popularity these 
days. Comparison of the gene sets obtained for a variety of traits measured from a single genetic epidemiology dataset may 
give insights into the biological mechanisms underlying these traits. Based on the previously published single nucleotide 
polymorphism (SNP) genotype data on 8,842 individuals enrolled in the Korea Association Resource project, we performed 
a series of systematic genome-wide association analyses for 49 quantitative traits of basic epidemiological, anthropometric, 
or blood chemistry parameters. Each analysis result was subjected to subsequent gene set analyses based on Gene Ontology 
(GO) terms using gene set analysis software, GSA-SNP, identifying a set of GO terms significantly associated to each trait (pcorr 
＜ 0.05). Pairwise comparison of the traits in terms of the semantic similarity in their GO sets revealed surprising cases where 
phenotypically uncorrelated traits showed high similarity in terms of biological pathways. For example, the pH level was 
related to 7 other traits that showed low phenotypic correlations with it. A literature survey implies that these traits may be 
regulated partly by common pathways that involve neuronal or nerve systems.
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Introduction

Genome-wide association (GWA) studies are now well 
established for discovering hypothesis-free genetic loci 
whose variations are associated with a phenotype [1-4]. 
Downstream analysis of the study result in terms of gene 
sets is gaining popularity these days, as it facilitates bio-
logical interpretation of a GWA result [5].

The Korea Association Resource (KARE) project has 
collected epidemiological and genotype data from the 
regional cohorts in Ansung and Ansan, Korea [6]. A number 
of GWA studies based on this KARE data have been 
published so far [6-8]. We pursued re-analyses of these 
studies in terms of gene sets in a systematic way to warrant 
cross-comparisons of the traits. We mimicked the analysis 
conditions of the original published GWA works as much as 
possible, based on the de facto standard program PLINK [9]. 
For the gene set analysis, we used GSA-SNP software [10], 
an efficient Java-based application that accepts a list of single 

nucleotide polymorphisms (SNPs) and their association 
p-values and outputs the gene set p-values after multiple 
testing correction.

We applied this procedure to 49 baseline quantitative 
traits that were of epidemiological, anthropometric, or blood 
chemistry parameters. As expected, those traits that are 
known to share common biological mechanisms and to 
overlap in their population incidences indeed showed si-
milar profiles of the significantly associated gene sets. To our 
surprise, some of the traits that were phenotypically uncor-
related in our study population and were seemingly un-
related to each other showed similar profiles of the 
significantly associated gene sets. Our results may demon-
strate a useful strategy of discovering pleiotropy, which 
refers to a phenomenon of common pathways involved in 
distinct phenotypes.

http://dx.doi.org/10.5808/GI.2013.11.3.135
mailto:sskmb@ssu.ac.kr
http://creativecommons.org/licenses/by-nc/3.0


136 www.genominfo.org

J Kim, et al. Gene Set Analyses of 49 Quantitative Traits 

Methods
Phenotype and genotype data

Details of the KARE study design have been reported [6]. 
Briefly, the genotype data were measured for a total of 10,038 
residents in both Ansung and Ansan provinces, Korea, using 
Affymetrix Genome-wide Human SNP Array 5.0 chips 
(Affymetrix Inc., Santa Clara, CA, USA). After quality 
control, 352k SNP genotypes for 8,842 samples were used in 
the subsequent GWA analyses. The epidemiological trait 
data for these individuals were also received from the KARE 
project. Among a total of 49 quantitative traits, we took a 
logarithm of 5 trait values to balance the distribution.

GWA analyses

We used the imputed genotype data that comprised 1.8 
million SNP markers [6]. GWA analyses of these 49 quan-
titative traits were performed by linear regression under the 
additive genetic model, as implemented in PLINK.

Gene set analyses

We performed GSA using the Gene Ontology (GO) data-
bases, where only gene sets having 10‒200 members (2,476 
biological process GO terms) were used. We applied the 
Z-statistic method, as implemented in GSA-SNP [10], with 
the default options. Briefly, those SNPs residing inside or 
within 20 kb of the boundary of each gene were compiled, 
and the second best p-value was assigned to the gene. See 
Kwon et al. [11] for the rationale of using the second best 
p-value instead of the best p-value. The gene score was 
defined as the －log of the p-value assigned to the gene. The 
Z-statistic was then calculated for each gene set [10]. The 
p-values for each gene set were computed under the 
assumption of a normal distribution of the Z-statistic, 
followed by multiple testing correction using the false 
discovery rate method. When the member genes of a gene 
set overlapped in their genomic loci or were located in 
tandem within a short block of strong linkage disequili-
brium, the p-values assigned to them might have been highly 
correlated. In such cases, only one of them was included to 
calculate the gene set score.

Semantic similarity between GO terms

The R package GOSemSim was developed to compute 
semantic similarity among GO terms, sets of GO terms, gene 
products, and gene clusters. This package contains functions 
to estimate the semantic similarity of GO terms based on 
Resnik's, Lin's, Jiang and Conrath's, Rel’s, and Wang’s 
methods. Here, we used Wang’s method for our analysis. 
This method determines the semantic similarity of two GO 
terms based on both the locations of these terms in the GO 

graph and their relationships with their ancestor terms [12]. 
The similarity index between the two GO terms was between 
0 (the least similar) and 1 (identical). The similarity between 
two sets of GO terms was calculated as follows. First, the 
highest value against all members of the other set was 
calculated for a given GO term in one of the sets. Then, all of 
these values were collected and averaged to provide the 
similarity between the two sets. The significance of the 
similarity index was inferred, based on the distribution of 
the indices from 106 random samplings.

Results and Discussion

Parallel and systematic GWA studies of a number of traits 
using a single genetic epidemiology dataset give a unique 
opportunity to explore common biological pathways regu-
lating multiple traits that do not display phenotypic cor-
relations. In this report, we focused on the 49 baseline 
quantitative trait data that were demographic, anthro-
pometric, or blood chemistry parameters. 

We surveyed the literature for the published GWA 
studies, based on the KARE data, and extracted the infor-
mation on the analysis conditions, such as exclusion of 
samples and covariates of association regression. For the 
GWA analyses of all 49 traits, we included area, age, and sex 
as covariates, and for some of the traits, additional covariates 
were added, based on the literature information (Table 1). 
The phenotypic relations were also learned from principal 
component analysis (PCA). For example, the directions 
pointed by waist and body mass index (BMI) were similar in 
the PCA plot (Fig. 1); using BMI as one of the covariates for 
the analysis of waist. On the contrary, we used a literature 
guide for the analysis of BMI [13]. GWA analyses for all 49 
traits were performed using linear regression, as imple-
mented in PLINK, and the resulting SNP p-values were fed 
into GSA-SNP for gene set analysis.

For each of the 49 traits, we identified biological process 
GO terms that showed p ＜ 0.05 after multiple testing 
correction (the lists are available upon request). As GO 
terms are hierarchically arranged, verbatim matches are not 
desirable for the comparison of a pair of gene sets. Instead, 
one should take into consideration the number of nodes in 
the GO tree that separate a pair of terms. For this, we used 
so-called semantic similarity, as implemented in the R 
package GOSemSim. For each pair of traits, we calculated the 
semantic similarity of the gene sets and plotted it against the 
correlation coefficient between the trait values (Fig. 2). The 
pairs showing semantic similarity greater than 0.8 corre-
sponded to traits that had high correlations in the trait 
values. We also noted many pairs having high semantic 
similarity, despite low phenotypic correlation. 
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Descriptiona Variableb Covariatec Referenced

Height height Area, age, sex Yang et al. [13]
Body mass index (BMI) bmi Area, age, sex Yang et al. [13]
Waist waist Area, age, sex, BMI Fig. 1
Hip hip Area, age, sex, height, BMI Kiel et al. [14]
Waist hip ratio whr Area, age, sex Fig. 1
Weight weight Area, age, sex Fig. 1
Systolic blood pressure (sitting position) sbp0 Area, age, sex, BMI Hong et al. [8]
Diastolic blood pressure (sitting position) dbp0 Area, age, sex, BMI Hong et al. [8]
Systolic blood pressure (lying position) sbp Area, age, sex, BMI Hong et al. [8]
Diastolic blood pressure (lying position) dbp Area, age, sex, BMI Hong et al. [8]
Subscapular sub Area, age, sex Kim et al. [15]
Suprailiac sup Area, age, sex Kim et al. [15]
Pulse rate pllie Area, age, sex, BMI Hong et al. [8]
Distal radius SOS (for bone density measure) ds Area, age, sex, height Fig. 1
Midshaft tibia SOS (for bone density measure) ms Area, age, sex, height Fig. 1
High density lipoprotein cholesterol hdl Area, age, sex, BMI Pyun et al. [16]
Total cholesterol tchl Area, age, sex, BMI Pyun et al. [16]
Triglyceride tg Area, age, sex, BMI Pyun et al. [16]
Low density lipoprotein cholesterol ldl Area, age, sex, BMI Pyun et al. [16]
Total cholesterol-HDL nonhdl Area, age, sex, BMI Fig. 1
Total cholesterol/HDL t_hdl Area, age, sex, BMI Fig. 1
Fasting blood glucose glu0 Area, age, sex Cho et al. [6]
Blood glucose (OGTT after 60 min) glu60 Area, age, sex Cho et al. [6]
Blood glucose (OGTT after 120 min) glu120 Area, age, sex Cho et al. [6]
Fasting blood insulin ins0 Area, age, sex, BMI Chen et al. [17]
Blood insulin (OGTT after 60 min) ins60 Area, age, sex, BMI Chen et al. [17]
Blood insulin (OGTT after 120 min) ins120 Area, age, sex, BMI Chen et al. [17]
Glycosylated hemoglobin hba1c Area, age, sex, BMI Ryu and Lee [18]
White blood cells wbc_b Area, age, sex, BMI Kong and Lee [19]
Red blood cells rbc_b Area, age, sex, BMI Kwon and Kim [20]
Sodium SONA Area, age, sex, BMI Fig. 1
Potassium POTA_K Area, age, sex, BMI Fig. 1
Chloride CHL_CI Area, age, sex, BMI Fig. 1
Hemoglobin (Hb) HB Area, age, sex, BMI Kwon and Kim [20]
C-reactive protein CRP Area, age, sex, BMI Kong and Lee [19]
Renin RENIN Area, age, sex, BMI Fig. 1
Platelet PLAT Area, age, sex, BMI Fig. 1
Spirometry (FVC_%PRED) SP1_3 Area, age, sex, BMI, height Ro et al. [21]
Spirometry (FEV1_%PRED) SP2_3 Area, age, sex, BMI, height Ro et al. [21]
Spirometry (FEV1/FVC_PRED) SP3_1 Area, age, sex, BMI, height Ro et al. [21]
AST AST Area, age, sex Woo and Lee [22]
ALT ALT Area, age, sex Woo and Lee [22]
r-GTP r_gtp Area, age, sex Fig. 1
Homa homa Area, age, sex, BMI Fig. 1
Blood urea nitrogen bun Area, age, sex, BMI Fig. 1
Creatine creatn Area, age, sex, BMI Fig. 1
Hematocrit hct Area, age, sex, BMI Kwon and Kim [20]
Urine/pH ph Area, age, sex, BMI Fig. 1
Urine-specific gravity sg Area, age, sex, BMI Fig. 1

SOS, speed of sound; HDL, high density lipoprotein cholesterol; OGTT, oral glucose tolerance test; FVC, forced vital capacity; FEV1, 
forced expiratory volume in one second; AST, aspartate aminotransferase; ALT, alanine aminotransferase.
aThe full description of the target trait of the genome-wide association study (GWAS); bThe abbreviation of the trait; cThe covariates 
used in the regression analysis; dThe original reference that reported the GWAS.

Table 1. List of the traits used in this work
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Fig. 2. Scatter plot of correlation coefficients versus biological 
process Gene Ontology semantic similarities (GOSemSim) bet-
ween trait pairs. The red horizontal line marks the GOSemSim 
value at 0.75.

Fig. 3. Interaction network between 
traits based on biological process 
Gene Ontology semantic similarity. 
Pairs of traits having the semantic 
similarity greater than 0.75 are con-
nected. On the other hand, the edge 
color represents the direction of phe-
notypic correlations (red and green for
positive and negative correlations, res-
pectively), and the brightness of the 
line represents the level of correlation 
(the brighter the higher correlation, 
and the darker the lower correlation).

Fig. 1. Principal component analysis of the phenotype values of 
49 quantitative traits used in this study. See Table 1 for the trait 
abbreviations.

We selected 46 trait pairs that showed a semantic simi-
larity in gene sets greater than an arbitrary cutoff of 0.75 and 
depicted the interaction network using Cytoscape (Fig. 3). 
The traits related to blood lipid levels, such as total cho-
lesterol, high density lipoprotein cholesterol, low density 
lipoprotein cholesterol, and triglycerides (TGs), formed a 
small network by themselves. As cholesterol and TGs are 
components of lipoproteins, it is not surprising to observe 
such a network. Both hip and waist-hip ratio are connected 
to suprailiac skinfold; they are all related to body fat. The 

most striking feature is a large network involving 20 traits. In 
this network, the traits related to blood glucose levels, such 
as GLU0, GLU60, GLU120, HbA1c, and HOMA, form a 
subnetwork. In addition, the traits related to either blood 
pressure or liver damage also formed respective sub-
networks, as expected from their high phenotypic cor-
relations.

We also noted some hub nodes having many first 
neighbors. Interestingly, the pH level was connected to 7 
other traits, none of which showed high phenotypic 
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Shared traits Title of the reference Reference 
ID

Urine/pH A familial disorder of uric acid metabolism and central nervous system function [23]
Effect of pH change upon renal vascular resistance and urine flow [24]
Changes in skin, salivary, and urinary pH as indicators of anxiety level in humans [25]
Activation of pelvic afferent nerves from the rat bladder during filling [26]

Weight Body weight reduction, sympathetic nerve traffic, and arterial Baroreflex in obese normotensive humans [27]
Reduced sympathetic nervous activity: a potential mechanism predisposing to body weight gain [28]

Diastolic blood 
 pressure

Sympathetic nerve activity: role in regulation of blood pressure in the spontaneously hypertensive rat [29]

Human muscle nerve sympathetic activity at rest; relationship to blood pressure and age [30]
Red blood cells Purification of a human red blood cell protein supporting the survival of cultured CNS neurons,

 and its identification as catalase [31]

Sodium Neuropathic pain: etiology, symptoms, mechanisms, and management [32]
Ionic blockage of sodium channels in nerve [33]
Molecular mechanisms of neurotoxin action on voltage-gated sodium channels [34]

AST/ALT Functional and morphometric study of the liver in motor neuron disease [35]
Hematocrit Higher hematocrit improves cerebral outcome after deep hypothermic circulatory arrest [36]

Iron is essential for neuron development and memory function in mouse hippocampus [37]

CNS, central nervous system; AST, aspartate aminotransferase; ALT, alanine aminotransferase.

Table 3. Literature evidence of neuronal systems regulating pH and its first neighbor traits in Fig. 3

GO category GO ID GO description No. of sharing traits

Nerve GO:0001764 Neuron migration 8
GO:0010975 Regulation of neuron projection development 8
GO:0021537 Telencephalon development 8
GO:0031644 Regulation of neurological system process 8
GO:0050804 Regulation of synaptic transmission 8
GO:0051969 Regulation of transmission of nerve impulse 8
GO:0007158 Neuron cell-cell adhesion 7
GO:0007612 Learning 7
GO:0008038 Neuron recognition 7
GO:0021543 Pallium development 7
GO:0050890 Cognition 7

GTPase GO:0035023 Regulation of Rho protein signal transduction 7
GO:0043087 Regulation of GTPase activity 7
GO:0043547 Positive regulation of GTPase activity 7

Molting cycle GO:0001942 Hair follicle development 7
GO:0022404 Molting cycle process 7
GO:0022405 Hair cycle process 7

Cell adhesion GO:0007156 Homophilic cell adhesion 8
GO:0010810 Regulation of cell-substrate adhesion 7

Others GO:0006816 Calcium ion transport 8
GO:0044089 Positive regulation of cellular component biogenesis 8
GO:0051899 Membrane depolarization 8
GO:0007626 Locomotory behavior 7
GO:0008037 Cell recognition 7
GO:0034330 Cell junction organization 7
GO:0007215 Glutamate receptor signaling pathway 7

Table 2. The biological Gene Ontology (GO) terms commonly associated with pH and its first neighbor traits in Fig. 3 GO category
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correlations with it. We examined the gene sets that were 
commonly shared between these traits (Table 2). Among 
them, 11 were related to neuron development and function. 
We surveyed the literature for putative involvement of 
neuronal or nerve systems in the regulation of those 8 traits 
(Table 3). Although it is presumptive, this may imply that 
these traits are regulated partly by common pathways that 
involve the neuronal system.

In conclusion, our work may be a useful approach for 
discovering pleiotropy.
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