DOI QR코드

DOI QR Code

Microbial Consortia in Oman Oil Fields: A Possible Use in Enhanced Oil Recovery

  • Al-Bahry, Saif N. (College of Science, Biology Department, Sultan Qaboos University) ;
  • Elsahfie, Abdulkader E. (College of Science, Biology Department, Sultan Qaboos University) ;
  • Al-Wahaibi, Yahya M. (College of Engineering, Petroleum and Chemical Engineering Department, Sultan Qaboos University) ;
  • Al-Bimani, Ali S. (College of Engineering, Petroleum and Chemical Engineering Department, Sultan Qaboos University) ;
  • Joshi, Sanket J. (College of Science, Biology Department, Sultan Qaboos University) ;
  • Al-Maaini, Ratiba A. (College of Science, Biology Department, Sultan Qaboos University) ;
  • Al-Alawai, Wafa J. (College of Science, Biology Department, Sultan Qaboos University) ;
  • Sugai, Yuichi (Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University) ;
  • Al-Mandhari, Mussalam (Petroleum Development of Oman)
  • Received : 2012.04.10
  • Accepted : 2012.09.07
  • Published : 2013.01.28

Abstract

Microbial enhanced oil recovery (MEOR) is one of the most economical and efficient methods for extending the life of production wells in a declining reservoir. Microbial consortia from Wafra oil wells and Suwaihat production water, Al-Wusta region, Oman were screened. Microbial consortia in brine samples were identified using denaturing gradient gel electrophoresis and 16S rRNA gene sequences. The detected microbial consortia of Wafra oil wells were completely different from microbial consortia of Suwaihat formation water. A total of 33 genera and 58 species were identified in Wafra oil wells and Suwaihat production water. All of the identified microbial genera were first reported in Oman, with Caminicella sporogenes for the first time reported from oil fields. Most of the identified microorganisms were found to be anaerobic, thermophilic, and halophilic, and produced biogases, biosolvants, and biosurfactants as by-products, which may be good candidates for MEOR.

Keywords

References

  1. Alain, K. P., M. Pignet, M. Zbinden, F. Quillevere, J. P. Duchiron, F. Donval, et al. 2002. Caminicella sporogenes gen. nov., sp. nov., a novel thermophilic spore-forming bacterium isolated from an East-Pacific Rise hydrothermal vent. Int. J. Syst. Evol. Microbiol. 52: 1621-1628. https://doi.org/10.1099/ijs.0.02142-0
  2. Aminin, A. L. N., F. M. Warganegara, P. Aditiawati, and Akhmaloka. 2008. Culture-independent and culture-dependent approaches on microbial community analysis at Gedongsongo (GS-2) hot spring. Int. J. Integ. Biol. 2: 145-152.
  3. Arahal, D. R., M. Teresa Garcia, W. Ludwig, K. H. Schleiferand, and A. Ventosa. 2001. Transfer of Halomonas israelensis to the genus Chromohalobacter as Chromohalobacter canadensis comb. nov. and Chromohalobacter israelensis comb. nov. Int. J. Syst. Evol. Microbiol. 51: 1443-1448.
  4. Azadapour, A. 1992. Isolation, characterization and metabolism of microorganisms indigenous to subterranean oil bearing formation. Mississippi State University.
  5. Banat, I. M. 1993. The isolation of a thermophilic biosurfactant producing Bacillus sp. Biotechnol. Lett. 15: 591-594. https://doi.org/10.1007/BF00138546
  6. Bhupathiraju, V. K., M. J. McInerney, and R. M. Knapp. 1993. Pretest studies for a microbially enhanced oil recovery field pilot in a hypersaline oil reservoir. Geomicrobiol. J. 11: 19-34. https://doi.org/10.1080/01490459309377929
  7. Blasco, R., M. Martinez-Luque, M. P. Madrid, F. Castillo, and C. Moreno-Vivian. 2001. Rhodococcus sp. RB1 grows in the presence of high nitrate and nitrite concentrations and assimilates nitrate in moderately saline environments. Arch. Microbiol. 175: 435-440. https://doi.org/10.1007/s002030100285
  8. Brogne, S., D. Paniagua, and R. Vazquez-Duhalt. 2008. Biodegradation of organic pollutants by halophilic bacteria and archaea. J. Mol. Microbiol. Biotechnol. 15: 74-92. https://doi.org/10.1159/000121323
  9. Dahle, H., F. Garshol, M. Madsen, and N. K. Birkeland. 2008. Microbial community structure analysis of produced water from a high-temperature North Sea oil field. Antonie van Leeuwenhoek 93: 37-49. https://doi.org/10.1007/s10482-007-9177-z
  10. Eden, B., P. Laycock, and M. Fielder. 1993. Oilfield Reservoir Souring. Health and Safety Executive.
  11. Gevertz, D., J. R. Paterek, M. E. Davey, and W. A. Wood. 1991. Isolation and characterization of anaerobic halophilic bacteria from oil reservoir brines. Dev. Petrol. Sci. Ser. 31: 115-129. https://doi.org/10.1016/S0376-7361(09)70154-2
  12. Haridon, S. L., M. L. Miroshnichenko, H. Hippe, M. L. Fardeau, E. A. Bonch-Osmolovskaya, E. Stackebrandt, and C. Jeanthon. 2002. Petrotoga olearia sp. nov. and Petrotoga sibirica sp. nov., two thermophilic bacteria isolated from a continental petroleum reservoir in Western Siberia. Int. J. Syst. Evol. Microbiol. 52: 1715-1722. https://doi.org/10.1099/ijs.0.02153-0
  13. Helmke, E. and H. Weyland. 1984. Rhodococcus marinonascens sp. nov. an Actinomycete from the sea. Int. J. Syst. Bacteriol. 34: 127-138. https://doi.org/10.1099/00207713-34-2-127
  14. Heylen, K., B. Vanaparys, L. Wittebolle, W. Verstraete, N. Boon, and P. D. Vos. 2006. Cultivation of denitrifying bacteria: Optimization of isolation conditions and diversity study. Appl. Environ. Microbiol. 72: 2637-2643. https://doi.org/10.1128/AEM.72.4.2637-2643.2006
  15. Jeanthon, C., A. L. Reysenbach, S. L'Haridon, A. Gambacorta, N. R. Pace, P. Glenat, and D. Prieur. 1995. Thermotoga subterranea sp. nov., a new thermophilic bacterium isolated from a continental oil reservoir. Arch. Microbiol. 164: 91-97. https://doi.org/10.1007/BF02525313
  16. Klouche, N., M. L. Fardeau, J. F. Lascourreges, J. L. Cayol, H. Hacene, P. Thomas, and M. Magot. 2007. Geosporobacter subterraneus gen. nov., a spore-forming bacterium isolated from a deep subsurface aquifer. Int. J. Syst. Evol. Microbiol. 57: 1757-1761. https://doi.org/10.1099/ijs.0.64642-0
  17. Li, H., S. Z. Yang, B. Z. Mu, Z. F. Rong, and J. Zhang. 2006. Molecular analysis of the bacterial community in a continental high-temperature and water-flooded petroleum reservoir. FEMS Microbiol. Lett. 257: 92-98. https://doi.org/10.1111/j.1574-6968.2006.00149.x
  18. Lien, T., M. Madsen, F. A. Rainey, and N. K. Birkeland. 1998. Petrotoga mobilis sp.nov., from a North Sea oil production well. Int. J. Syst. Bacteriol. 48: 1007-1013. https://doi.org/10.1099/00207713-48-3-1007
  19. Liu, Y. J., Y. P. Chen, P. K. Jin, and X. C. Wang. 2009. Bacterial communities in a crude oil gathering and transferring system (China). Ecol. Environ. Microbiol. 1: 5.
  20. Magot, M., B. Olliver, and B. K. C. Patel. 2000. Microbiology of petroleum reservoirs. Antonie Van Leeuwenhoek 77: 103-116. https://doi.org/10.1023/A:1002434330514
  21. Maneerat, S. and K. Phetrong. 2007. Isolation of biosurfactantproducing marine bacteria and characteristics of selected biosurfactant. Songklanakarin J. Sci. Technol. 29: 781-791.
  22. McInerney, M. J., M. P. Baryant, R. B. Hespell, and J. W. Costerton. 1981. Syntrophomonas wolfeigen novo. sp. novo., anaerobic, syntrophic, fatty acid-oxidizing bacterium. Appl. Environ. Microbiol. 41: 1029-1039.
  23. Miranda-Tello, E., M. L. Fardeau, J. Sepulveda, L. Fernandez, J. L. Cayol, P. Thomas, and B. Oillivier. 2004. Graciella nitratireducens gen. nov., sp. nov., anaerobic, thermophilic, nitrate- and thiosulfate-reducing bacterium isolated from an oil field separator in the Gulf of Mexico. Int. J. Syst. Evol. Microbiol. 53: 1509-1514.
  24. Nazina, T. M., D. S. Sokolova, A. A. Grigoryan, N. M. Shestakova, E. M. Mikhailova, A. B. Poltaraus, et al. 2005. Geobacillus jurassicus sp. nov., a new thermophilic bacterium isolated from a high-temperature petroleum reservoir, and the validation of the Geobacillus species. Syst. Appl. Microbiol. 28: 43-53. https://doi.org/10.1016/j.syapm.2004.09.001
  25. Oliveira, V. M., L. D. Sette, K. C. M. Simioni, and E. V. S. Neto. 2008. Bacterial diversity characterization in petroleum samples from Brazillian reservoirs. Braz. J. Microbiol. 39: 445-452 https://doi.org/10.1590/S1517-83822008000300007
  26. Ollivier, B. and J. L. Cayol. 2005. Fermentative, iron-reducing and nitrate-reducing microorganisms, 71-88. In B. Ollivier, and M. Magot (eds.). Petroleum Microbiology. ASM Press, Washington, USA.
  27. Orphan, V. J., S. K. Goffredi, E. F. Delong, and J. R. Boles. 2003. Geochemical influence on diversity and microbial processes in high temperature oil reservoirs. Geomicrobiol. J. 20: 295-311 https://doi.org/10.1080/01490450303898
  28. Orphan, V. J., L. T. Taylor, D. Hafenbradl, and E. F. Delong. 2000. Culture dependent and culture independent characterization of microbial assemblages associated with high temperature petroleum reservoirs. Appl. Environ. Microbiol. 66: 700-711. https://doi.org/10.1128/AEM.66.2.700-711.2000
  29. Ravot, G., M. Magot, M. L. Fardeau, B. K. C. Patel, G. Prensier, A. Egan, et al. 1995. Thermotoga elfii sp. nov., a novel thermophilic bacterium from an African oil producing well. Int. J. Syst. Bacteriol. 45: 308-314. https://doi.org/10.1099/00207713-45-2-308
  30. Satyanarayana, T., C. Raghukumar, and S. Shivaji. 2005. Extremophilic microbes: Diversity and perspectives. Curr. Sci. 89: 78-90.
  31. Sepahy, A. A., M. M. Assadi, V. Saggadian, and A. Noohi. 2005. Production of biosurfactant from Iranian oil fields by isolated bacilli. Int. J. Environ. Sci. Technol. 1: 287-293. https://doi.org/10.1007/BF03325844
  32. Spark, I., I. Patey, B. Duncan, A. Hamilton, C. Devine, and C. Mcgovern-Traa. 2000. The effects of indigenous and introduced microbes on deeply buried hydrocarbon reservoirs, North Sea. Clay Minerals 35: 5-12. https://doi.org/10.1180/000985500546693
  33. Vreeland, R. H., C. D. Litchfield, E. L. Martin, and E. Elliot. 1980. Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Soc. Gen. Microbiol. 30: 485-495
  34. Wang, J., T. Ma, L. Zhao, J. Lv, G. Li, F. Liang, and R. Liu. 2008. PCR-DGGE method for analyzing the bacterial community in a high temperature petroleum reservoir. World J. Microbiol. Biotechnol. 24: 1981-1987. https://doi.org/10.1007/s11274-008-9694-6
  35. Yamane, K., H. Maki, T. Nakayama, T. Nakajima, N. Nomura, H. Uchiyama, and M. Kitaoka. 2008. Diversity and similarity of microbial communities in petroleum crude oils produced in Asia. Biosci. Biotechnol. Biochem. 72: 2831-2839. https://doi.org/10.1271/bbb.80227
  36. Yoshida, N., K. Yagi, D. Sato, N. Watanabe, T. Kuroishi, K. Nishimoto, et al. 2005. Bacterial communities in petroleum oil in stockpiles. J. Biosci. Bioeng. 99: 143-149.
  37. Youssef, N. H., K. E. Duncan, D. P. Nagle, K. N. Savage, R. M. Knapp, and M. J. McInerney. 2004. Comparison of methods to detect biosurfactant production by diverse microorganisms. J. Microbiol. Methods 56: 339-347. https://doi.org/10.1016/j.mimet.2003.11.001

Cited by

  1. Differences in microbial community composition between injection and production water samples of water flooding petroleum reservoirs vol.12, pp.11, 2015, https://doi.org/10.5194/bg-12-3403-2015
  2. Microbial diversity and abundance in the Xinjiang Luliang long-term water-flooding petroleum reservoir vol.4, pp.2, 2013, https://doi.org/10.1002/mbo3.241
  3. Microbial community dynamics in Baolige oilfield during MEOR treatment, revealed by Illumina MiSeq sequencing vol.100, pp.3, 2016, https://doi.org/10.1007/s00253-015-7073-4
  4. Injection of biosurfactant and chemical surfactant following hot water injection to enhance heavy oil recovery vol.13, pp.1, 2013, https://doi.org/10.1007/s12182-015-0067-0
  5. Potential in heavy oil biodegradation via enrichment of spore forming bacterial consortia vol.6, pp.4, 2013, https://doi.org/10.1007/s13202-016-0228-8
  6. Spatial isolation and environmental factors drive distinct bacterial and archaeal communities in different types of petroleum reservoirs in China vol.6, pp.None, 2013, https://doi.org/10.1038/srep20174
  7. Microorganisms of low-temperature heavy oil reservoirs (Russia) and their possible application for enhanced oil recovery vol.86, pp.6, 2013, https://doi.org/10.1134/s0026261717060121
  8. Potential of the green alga Chlorella vulgaris for biodegradation of crude oil hydrocarbons vol.123, pp.1, 2013, https://doi.org/10.1016/j.marpolbul.2017.08.045
  9. Synergistic plant-microbes interactions in the rhizosphere: a potential headway for the remediation of hydrocarbon polluted soils vol.21, pp.2, 2013, https://doi.org/10.1080/15226514.2018.1474437
  10. The Potential Application of Microorganisms for Sustainable Petroleum Recovery from Heavy Oil Reservoirs vol.12, pp.1, 2013, https://doi.org/10.3390/su12010015
  11. Novel clostridial lineages recovered from metagenomes of a hot oil reservoir vol.10, pp.None, 2020, https://doi.org/10.1038/s41598-020-64904-6