DOI QR코드

DOI QR Code

Media Optimization of Corynebacterium glutamicum for Succinate Production Under Oxygen-Deprived Condition

  • Received : 2012.06.22
  • Accepted : 2012.10.16
  • Published : 2013.02.28

Abstract

Corynebacterium glutamicum is one of the well-studied industrial strain that is used for the production of nucleotides and amino acids. Recently, it has also been studied as a possible producer of organic acids such as succinic acid, based on its ability to produce organic acids under an oxygen deprivation condition. In this study, we conducted the optimization of medium components for improved succinate production from C. glutamicum under an oxygen deprivation condition by Plackett-Burman design and applied a response surface methodology. A Plackett-Burman design for ten factors such as glucose, ammonium sulfate, magnesium sulfate, potassium phosphate ($K_2HPO_4$ and $KH_2PO_4$), iron sulfate, manganese sulfate, biotin, thiamine, and sodium bicarbonate was applied to evaluate the effects on succinate production. Glucose, ammonium sulfate, magnesium sulfate, and dipotassium phosphate were found to have significant influence on succinate production, and the optimal concentrations of these four factors were sequentially investigated by the response surface methodology using a Box-Behnken design. The optimal medium components obtained for achieving maximum concentration of succinic acid were as follows: glucose 10 g/l, magnesium sulfate 0.5 g/l, dipotassium phosphate ($K_2HPO_4$) 0.75 g/l, potassium dihydrogen phosphate ($KH_2PO_4$) 0.5 g/l, iron sulfate 6 mg/l, manganese sulfate 4.2 mg/l, biotin 0.2 mg/l, thiamine 0.2 mg/l, and sodium bicarbonate 100 mM. The parameters that differed from a normal BT medium were glucose changed from 40 g/l to 10 g/l, dipotassium phosphate ($K_2HPO_4$) 0.5 g/l changed to 0.75 g/l, and ammonium sulfate ($(NH_4)_2SO_4$) 7 g/l changed to 0 g/l. Under these conditions, the final succinic acid concentration was 16.3 mM, which is about 1.46 fold higher than the original medium (11.1 mM) at 24 h. This work showed the improvement of succinate production by a simple change of media components deduced from sequential optimization.

Keywords

References

  1. Chae, Y. K. and J. L. Markley. 2000. Functional recombinant rabbit muscle phosphoglucomutase from Escherichia coli. Protein Expr. Purif. 20: 124-127. https://doi.org/10.1006/prep.2000.1288
  2. Corma, A., S. Iborra, and A. Velty. 2007. Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107: 2411-2502. https://doi.org/10.1021/cr050989d
  3. Fink, D., N. Weissschuh, J. Reuther, W. Wohlleben, and A. Engels. 2002. Two transcriptional regulators GlnR and GlnRII are involved in regulation of nitrogen metabolism in Streptomyces coelicolor A3(2). Mol. Microbiol. 46: 331-347. https://doi.org/10.1046/j.1365-2958.2002.03150.x
  4. Goodchild, J. A. and C. V. Givan. 1990. Influence of ammonium and extracellular pH on the amino and organic acid contents of suspension culture cells of Acer pseudoplatanus. Physiol. Plant 78: 29-37. https://doi.org/10.1111/j.1399-3054.1990.tb08710.x
  5. Guettler, M. V. and M. Jain. 1996. Method for making succinic acid, Anaerobiospirillum succiniciproducens variants for use in process and methods for obtaining variants. US patent 5,521,075.
  6. Guettler, M. V., D. Rumler, and M. K. Jain. 1999. Actinobacillus succinogenes sp. nov., a novel succinic-acid-producing strain from the bovine rumen. Int. J. Syst. Bacteriol. 49: 207-216. https://doi.org/10.1099/00207713-49-1-207
  7. Hachiya, T., C. K. Watanabe, M. Fujimoto, T. Ishikawa, K. Takahara, M. Kawai-Yamada, et al. 2012. Nitrate addition alleviates ammonium toxicity without lessening ammonium accumulation, organic acid depletion and inorganic cation depletion in Arabidopsis thaliana shoots. Plant Cell Physiol. 53: 577-591. https://doi.org/10.1093/pcp/pcs012
  8. Inui, M., S. Murakami, S. Okino, H. Kawaguchi, A. A. Vertes, and H. Yukawa. 2004. Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J. Mol. Microbiol. Biotechnol. 7: 182-196. https://doi.org/10.1159/000079827
  9. Inui, M., M. Suda, S. Kimura, K. Yasuda, H. Suzuki, H. Toda, et al. 2008. Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl. Microbiol. Biotechnol. 77: 1305-1316. https://doi.org/10.1007/s00253-007-1257-5
  10. Jantama, K., X. Zhang, J. C. Moore, K. T. Shanmugam, S. A. Svoronos, and L. O. Ingram. 2008. Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Biotechnol. Bioeng. 101: 881-893. https://doi.org/10.1002/bit.22005
  11. Krause, J. P., T. Polen, J. W. Youn, D. Emer, B. J. Eikmanns, and V. F. Wendisch. 2012. Regulation of the malic enzyme gene malE by the transcriptional regulator MalR in Corynebacterium glutamicum. J. Biotechnol. 159: 204-215. https://doi.org/10.1016/j.jbiotec.2012.01.003
  12. Kurzrock, T. and D. Weuster-Botz. 2010. Recovery of succinic acid from fermentation broth. Biotechnol. Lett. 32: 331-339. https://doi.org/10.1007/s10529-009-0163-6
  13. Lee, K., H. S. Joo, Y. H. Yang, E. Song, and B. G. Kim. 2006. Proteomics for Streptomyces: "Industrial proteomics" for antibiotics. J. Microbiol. Biotechnol. 16: 331-348.
  14. Lee, P. C., S. Y. Lee, S. H. Hong, and H. N. Chang. 2002. Isolation and characterization of a new succinic acid-producing bacterium, Mannheimia succiniciproducens MBEL55E, from bovine rumen. Appl. Microbiol. Biotechnol. 58: 663-668. https://doi.org/10.1007/s00253-002-0935-6
  15. Litsanov, B., M. Brocker, and M. Bott. 2012. Toward homosuccinate fermentation: Metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate. Appl. Environ. Microbiol. 78: 3325-3337. https://doi.org/10.1128/AEM.07790-11
  16. Ma, F. X., J. H. Kim, S. B. Kim, Y. G. Seo, Y. K. Chang, S. K. Hong, and C. J. Kim. 2008. Medium optimization for enhanced production of rifamycin B by Amycolatopsis mediterranei S699: Combining a full factorial design and a statistical approach. Process Biochem. 43: 954-960. https://doi.org/10.1016/j.procbio.2008.04.021
  17. Oh, I. J., D. H. Kim, E. K. Oh, S. Y. Lee, and J. Lee. 2009. Optimization and scale-up of succinic acid production by Mannheimia succiniciproducens LPK7. J. Microbiol. Biotechnol. 19: 167-171. https://doi.org/10.4014/jmb.0807.447
  18. Okino, S., M. Inui, and H. Yukawa. 2005. Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Appl. Microbiol. Biotechnol. 68: 475-480. https://doi.org/10.1007/s00253-005-1900-y
  19. Okino, S., R. Noburyu, M. Suda, T. Jojima, M. Inui, and H. Yukawa. 2008. An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl. Microbiol. Biotechnol. 81: 459-464. https://doi.org/10.1007/s00253-008-1668-y
  20. Song, H., Y. S. Huh, S. Y. Lee, W. H. Hong, and Y. K. Hong. 2007. Recovery of succinic acid produced by fermentation of a metabolically engineered Mannheimia succiniciproducens strain. J. Biotechnol. 132: 445-452. https://doi.org/10.1016/j.jbiotec.2007.07.496
  21. Yu, P., Y. A. Yan, and Y. P. Tang. 2011. Medium optimization for endochitinase production by recombinant Pichia pastoris ZJGSU02 using response surface methodology. Afr. J. Biotechnol. 10: 75-84.

Cited by

  1. Fermentative Succinate Production: An Emerging Technology to Replace the Traditional Petrochemical Processes vol.2013, pp.None, 2013, https://doi.org/10.1155/2013/723412
  2. Production of Rapamycin in Streptomyces hygroscopicus from Glycerol-Based Media Optimized by Systemic Methodology vol.24, pp.10, 2013, https://doi.org/10.4014/jmb.1403.03024
  3. A new metabolic route for the production of gamma-aminobutyric acid by Corynebacterium glutamicum from glucose vol.48, pp.11, 2013, https://doi.org/10.1007/s00726-016-2272-6
  4. Efficient malic acid production from glycerol with Ustilago trichophora TZ1 vol.9, pp.None, 2013, https://doi.org/10.1186/s13068-016-0483-4
  5. Optimization of a Culture Medium Using the Taguchi Approach for the Production of Microorganisms Active in Odorous Compound Removal vol.7, pp.8, 2013, https://doi.org/10.3390/app7080756
  6. Efficient itaconic acid production from glycerol with Ustilago vetiveriae TZ1 vol.10, pp.None, 2013, https://doi.org/10.1186/s13068-017-0809-x
  7. Media optimization for economic succinic acid production by Enterobacter sp. LU1. vol.7, pp.1, 2013, https://doi.org/10.1186/s13568-017-0423-0
  8. A Hierarchically Modified Graphite Cathode with Au Nanoislands, Cysteamine, and Au Nanocolloids for Increased Electricity-Assisted Production of Isobutanol by Engineered Shewanella oneidensis MR-1 vol.9, pp.50, 2013, https://doi.org/10.1021/acsami.7b09874
  9. Tuning of the Carbon-to-Nitrogen Ratio for the Production of l-Arginine by Escherichia coli vol.3, pp.4, 2013, https://doi.org/10.3390/fermentation3040060
  10. Physiological Response of Corynebacterium glutamicum to Increasingly Nutrient-Rich Growth Conditions vol.9, pp.None, 2018, https://doi.org/10.3389/fmicb.2018.02058
  11. Molecular Identification of Bacterial Strains Producing Succinic Acid from Indian Sources vol.12, pp.4, 2013, https://doi.org/10.22207/jpam.12.4.73
  12. Optimization of fermentation medium for succinic acid production using Basfia succiniciproducens vol.24, pp.None, 2013, https://doi.org/10.1016/j.eti.2021.101914
  13. Exploring functionality of the reverse β-oxidation pathway in Corynebacterium glutamicum for production of adipic acid vol.20, pp.1, 2013, https://doi.org/10.1186/s12934-021-01647-7