DOI QR코드

DOI QR Code

1-Deoxynojirimycin Isolated from a Bacillus subtilis Stimulates Adiponectin and GLUT4 Expressions in 3T3-L1 Adipocytes

  • Lee, Seung-Min (Department of Food and Nutrition, College of Human Ecology, Yonsei University) ;
  • Do, Hyun Ju (Department of Food and Nutrition and Institute of Health Sciences, Korea University) ;
  • Shin, Min-Jeong (Department of Food and Nutrition and Institute of Health Sciences, Korea University) ;
  • Seong, Su-Il (R&D Center for Life Science, Biotopia Co., Ltd.) ;
  • Hwang, Kyo Yeol (R&D Center for Life Science, Biotopia Co., Ltd.) ;
  • Lee, Jae Yeon (R&D Center for Life Science, Biotopia Co., Ltd.) ;
  • Kwon, Ohsuk (Systems and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Jin, Taewon (Cardiovascular Product Evaluation Center, Cardiovascular Research Institute, Yonsei University College of Medicine) ;
  • Chung, Ji Hyung (Cardiovascular Product Evaluation Center, Cardiovascular Research Institute, Yonsei University College of Medicine)
  • Received : 2012.09.14
  • Accepted : 2013.01.02
  • Published : 2013.05.28

Abstract

We have demonstrated that 1-deoxynojirimycin (DNJ) isolated from Bacillus subtilis MORI could enhance the levels of adiponectin and its receptors in differentiated 3T3-L1 adipocytes, which has been shown to be effective in lowering blood glucose levels and enhancing insulin sensitivity. DNJ was not toxic to differentiated 3T3-L1 adipocytes for up to a concentration of $5{\mu}M$. In terms of expression levels of adiponectin and its receptors (AdipoR1 and AdipoR2), DNJ in concentrations as low as $0.5{\mu}M$ elevated both mRNA and protein levels of adiponectin and transcript levels of AdipoR1 and AdipoR2. In addition, DNJ increased phosphorylation of 5' adenosine monophosphate-activated protein kinase (AMPK) in a statistically significant manner. Finally, treatment with DNJ resulted in increased mRNA expression of glucose transporter 4 (GLUT4), which encodes for a glucose transporter, along with a significant increase in glucose uptake into the adipocytes based on results of a 2-deoxy-D-[$^3H$] glucose uptake assay. Our findings indicate that DNJ may greatly facilitate glucose uptake into adipose tissues by increasing the action of adiponectin via its up-regulated expression as well as its receptor genes. In addition, the glucose-lowering effects of DNJ may be achieved by an increased abundance of GLUT4 protein in the plasma membrane, as a consequence of the increased transcript levels of the GLUT4 gene and the activation of AMPK.

Keywords

References

  1. Bauer, S., J. Weigert, M. Neumeier, J. Wanninger, A. Schaffler, A. Luchner, A. A. Schnitzbauer, C. Aslanidis, and C. Buechler. 2010. Low-abundant adiponectin receptors in visceral adipose tissue of humans and rats are further reduced in diabetic animals. Arch. Med. Res. 41: 75-82. https://doi.org/10.1016/j.arcmed.2010.02.010
  2. Bays, H. E. 2009. "Sick fat," metabolic disease, and atherosclerosis. Am. J. Med. 122: 26-37. https://doi.org/10.1016/j.amjmed.2008.10.015
  3. Berg, A. H., T. P. Combs, and P. E. Scherer. 2002. ACRP30/adiponectin: An adipokine regulating glucose and lipid metabolism. Trends Endocrinol. Metab. 13: 84-89. https://doi.org/10.1016/S1043-2760(01)00524-0
  4. Cho, Y. S., Y. S. Park, J. Y. Lee, K. D. Kang, K. Y. Hwang, and S. I. Seong. 2008. Hypoglycemic effect of culture broth of Bacillus subtilis S10 producing 1-deoxynojirimycin. J. Korean Soc. Food Sci. Nutr. 37: 1401-1407. https://doi.org/10.3746/jkfn.2008.37.11.1401
  5. Goldstein, B. J. and R. Scalia. 2004. Adiponectin: A novel adipokine linking adipocytes and vascular function. J. Clin. Endocrinol. Metab. 89: 2563-2568. https://doi.org/10.1210/jc.2004-0518
  6. Hardick, D. J., D. W. Hutchinson, S. J. Trew, and E. M. H. Wellington. 1991. The biosynthesis of deoxynojirimycin and deoxymannonojirimycin in Streptomyces subrutilus. J. Chem. Soc. Chem. Commun. 10: 729-730.
  7. Hardick, D. J. and D. W. Hutchinson. 1993. The biosynthesis of 1-deoxynojirimycin in Bacillus subtilis var niger. Tetrahedron 49: 6707-6716. https://doi.org/10.1016/S0040-4020(01)81840-8
  8. Holland, W. L., J. T. Brozinick, L. P. Wang, E. D. Hawkins, K. M. Sargent, Y. Liu, et al. 2007. Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab. 5: 167-179. https://doi.org/10.1016/j.cmet.2007.01.002
  9. Kadowaki, T., T. Yamauchi, N. Kubota, K. Hara, K. Ueki, and K. Tobe. 2006. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J. Clin. Invest. 116: 1784-1792. https://doi.org/10.1172/JCI29126
  10. Kang, K. D., Y. S. Cho, J. H. Song, Y. S. Park, J. Y. Lee, K. Y. Hwang, et al. 2011. Identification of the genes involved in 1- deoxynojirimycin synthesis in Bacillus subtilis MORI 3K-85. J. Microbiol. 49: 431-440. https://doi.org/10.1007/s12275-011-1238-3
  11. Kharroubi, I., J. Rasschaert, D. L. Eizirik, and M. Cnop. 2003. Expression of adiponectin receptors in pancreatic beta cells. Biochem. Biophys. Res. Commun. 312: 1118-1122. https://doi.org/10.1016/j.bbrc.2003.11.042
  12. Kojima, Y., T. Kimura, K. Nakagawa, A. Asai, K. Hasumi, S. Oikawa, and T. Miyazawa. 2010. Effects of mulberry leaf extract rich in 1-deoxynojirimycin on blood lipid profiles in humans. J. Clin. Biochem. Nutr. 47: 155-161. https://doi.org/10.3164/jcbn.10-53
  13. Kong, W. H., S. H. Oh, Y. R. Ahn, K. W. Kim, J. H. Kim, and S. W. Seo. 2008. Antiobesity effects and improvement of insulin sensitivity by 1-deoxynojirimycin in animal models. J. Agric. Food Chem. 56: 2613-2619. https://doi.org/10.1021/jf073223i
  14. Kwon, H. J., J. Y. Chung, J. Y. Kim, and O. Kwon. 2011. Comparison of 1-deoxynojirimycin and aqueous mulberry leaf extract with emphasis on postprandial hypoglycemic effects: In vivo and in vitro studies. J. Agric. Food Chem. 59: 3014-3019. https://doi.org/10.1021/jf103463f
  15. Luo, Z., A. K. Saha, X. Xiang, and N. B. Ruderman. 2005. AMPK, the metabolic syndrome and cancer. Trends Pharmacol. Sci. 26: 69-76. https://doi.org/10.1016/j.tips.2004.12.011
  16. Mantzoros, C. S., T. Li, J. E. Manson, J. B. Meigs, and F. B. Hu. 2005. Circulating adiponectin levels are associated with better glycemic control, more favorable lipid profile, and reduced inflammation in women with type 2 diabetes. J. Clin. Endocrinol. Metab. 90: 4542-4548. https://doi.org/10.1210/jc.2005-0372
  17. Miyazaki, T., J. D. Bub, M. Uzuki, and Y. Iwamoto. 2005. Adiponectin activates c-Jun NH2-terminal kinase and inhibits signal transducer and activator of transcription 3. Biochem. Biophys. Res. Commun. 333: 79-87. https://doi.org/10.1016/j.bbrc.2005.05.076
  18. Mu, J., J. T. Jr. Brozinick, O. Valladares, M. Bucan, and M. J. Birnbaum. 2001. A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Mol. Cell 7: 1085-1094. https://doi.org/10.1016/S1097-2765(01)00251-9
  19. Muniyappa, R., M. Iantorno, and M. J. Quon. 2008. An integrated view of insulin resistance and endothelial dysfunction. Endocrinol. Metab. Clin. North Am. 37: 685-711. https://doi.org/10.1016/j.ecl.2008.06.001
  20. Naowaboot, J., P. Pannangpetch, V. Kukongviriyapan, A. Prawan, U. Kukongviriyapan, and A. Itharat. 2012. Mulberry leaf extract stimulates glucose uptake and GLUT4 translocation in rat adipocytes. Am. J. Chin. Med. 40: 163-175. https://doi.org/10.1142/S0192415X12500139
  21. Spiegelman, B. M. and J. S. Flier. 2001. Obesity and the regulation of energy balance. Cell 104: 531-543. https://doi.org/10.1016/S0092-8674(01)00240-9
  22. Sugimoto, M., H. Arai, Y. Tamura, T. Murayama, P. Khaengkhan, T. Nishio, et al. 2009. Mulberry leaf ameliorates the expression profile of adipocytokines by inhibiting oxidative stress in white adipose tissue in db/db mice. Atherosclerosis 204: 388-394.
  23. Tsuchida, A., T. Yamauchi, Y. Ito, Y. Hada, T. Maki, S. Takekawa, et al. 2004. Insulin/Foxo1 pathway regulates expression levels of adiponectin receptors and adiponectin sensitivity. J. Biol. Chem. 279: 30817-30822. https://doi.org/10.1074/jbc.M402367200
  24. Tsuduki, T., Y. Nakamura, T. Honma, K. Nakagawa, T. Kimura, I. Ikeda, and T. Miyazawa. 2009. Intake of 1-deoxynojirimycin suppresses lipid accumulation through activation of the betaoxidation system in rat liver. J. Agric. Food Chem. 57: 11024-11029. https://doi.org/10.1021/jf903132r
  25. van Eijk, M., J. Aten, N. Bijl, R. Ottenhoff, C. P. van Roomen, P. F. Dubbelhuis, et al. 2009. Reducing glycosphingolipid content in adipose tissue of obese mice restores insulin sensitivity, adipogenesis and reduces inflammation. PLoS One 4: e4723. https://doi.org/10.1371/journal.pone.0004723
  26. Wu, X., H. Motoshima, K. Mahadev, T. J. Stalker, R. Scalia, and B. J. Goldstein. 2003. Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes. Diabetes 52: 1355-1363. https://doi.org/10.2337/diabetes.52.6.1355
  27. Yagi, M., T. Kouno, Y. Aoyagi, and H. Murai. 1976. The structure of Moraoline, a piperidine alkaloid from Morus species. Nippon Nougei Kagaku Kaishi 50: 571-572. https://doi.org/10.1271/nogeikagaku1924.50.11_571
  28. Yamauchi, T., J. Kamon, H. Waki, Y. Terauchi, N. Kubota, K. Hara, et al. 2001. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 7: 941-946. https://doi.org/10.1038/90984
  29. Yamauchi, T., J. Kamon, Y. Minokoshi, Y. Ito, H. Waki, S. Uchida, et al. 2002. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 8: 1288-1295. https://doi.org/10.1038/nm788
  30. Yin, J., Z. Gao, D. Liu, Z. Liu, and J. Ye. 2008. Berberine improves glucose metabolism through induction of glycolysis. Am. J. Physiol. Endocrinol. Metab. 294: E148-E156.
  31. Zheng, D., P. S. MacLean, S. C. Pohnert, J. B. Knight, A. L. Olson, W. W. Winder, and G. L. Dohm. 2001. Regulation of muscle GLUT-4 transcription by AMP-activated protein kinase. J. Appl. Physiol. 91: 1073-1083.
  32. Ziemke, F. and C. S. Mantzoros. 2010. Adiponectin in insulin resistance: Lessons from translational research. Am. J. Clin. Nutr. 91: 258S-261S. https://doi.org/10.3945/ajcn.2009.28449C

Cited by

  1. Screening Research Methods for ^|^alpha;-glucosidase Inhibitors and Angiotensin-converting Enzyme Inhibitors in Fermented Soybean Products and Fermented Milk Products vol.48, pp.1, 2013, https://doi.org/10.6090/jarq.48.41
  2. 대두발효물 섭취가 비만 여성의 혈청 지질 농도와 체중 및 체지방 감소에 미치는 영향 vol.28, pp.1, 2013, https://doi.org/10.15204/jkobgy.2015.28.1.058
  3. Mulberry 1-Deoxynojirimycin Inhibits Adipogenesis by Repression of the ERK/PPARγ Signaling Pathway in Porcine Intramuscular Adipocytes vol.63, pp.27, 2015, https://doi.org/10.1021/acs.jafc.5b01680
  4. Effects of Allium hookeri root water extracts on inhibition of adipogenesis and GLUT-4 expression in 3T3-L1 adipocytes vol.25, pp.2, 2013, https://doi.org/10.1007/s10068-016-0086-7
  5. Can food factors provide Us with the similar beneficial effects of physical exercise? vol.25, pp.suppl1, 2013, https://doi.org/10.1007/s10068-016-0092-9
  6. 1-Deoxynojirimycin: Occurrence, Extraction, Chemistry, Oral Pharmacokinetics, Biological Activities and In Silico Target Fishing vol.21, pp.11, 2013, https://doi.org/10.3390/molecules21111600
  7. A novel botanical formula prevents diabetes by improving insulin resistance vol.17, pp.None, 2013, https://doi.org/10.1186/s12906-017-1848-3
  8. 1-Deoxynojirimycin (DNJ) Ameliorates Indomethacin-Induced Gastric Ulcer in Mice by Affecting NF-kappaB Signaling Pathway vol.9, pp.None, 2013, https://doi.org/10.3389/fphar.2018.00372
  9. Improvement Activity of 1-Deoxynojirimycin in the Growth of Dairy Goat Primary Mammary Epithelial Cell through Upregulating LEF-1 Expression vol.2018, pp.None, 2013, https://doi.org/10.1155/2018/7809512
  10. Physiological Effects and Organ Distribution of Bacillus amyloliquefaciens AS385 Culture Broth Powder Containing 1-Deoxynojirimycin in C57BL/6J Mice vol.65, pp.2, 2013, https://doi.org/10.3177/jnsv.65.157
  11. Tolerance and Effect of a Probiotic Supplement Delivered in Capsule Form vol.10, pp.6, 2013, https://doi.org/10.4236/fns.2019.106046
  12. Bacillus subtilis Spore-Trained Dendritic Cells Enhance the Generation of Memory T Cells via ICAM1 vol.10, pp.9, 2013, https://doi.org/10.3390/cells10092267
  13. Antidiabetic compounds from medicinal plants traditionally used for the treatment of diabetes in Africa: A review update (2015-2020) vol.146, pp.None, 2013, https://doi.org/10.1016/j.sajb.2021.11.018