DOI QR코드

DOI QR Code

Decolorization of Dyehouse Effluent and Biodegradation of Congo Red by Bacillus thuringiensis RUN1

  • Olukanni, O.D. (Department of Chemical Sciences, Redeemer's University) ;
  • Osuntoki, A.A. (Department of Biochemistry, University of Lagos) ;
  • Awotula, A.O. (Department of Biochemistry, University of Lagos) ;
  • Kalyani, D.C. (Department of Biochemistry, Shivaji University) ;
  • Gbenle, G.O. (Department of Biochemistry, University of Lagos) ;
  • Govindwar, S.P. (Department of Biochemistry, Shivaji University)
  • Received : 2012.11.27
  • Accepted : 2013.02.01
  • Published : 2013.06.28

Abstract

A dye-decolorizing bacterium was isolated from a soil sample and identified as Bacillus thuringiensis using 16S rRNA sequencing. The bacterium was able to decolorize three different textile dyes, namely, Reactive blue 13, Reactive red 58, and Reactive yellow 42, and a real dyehouse effluent up to 80-95% within 6 h. Some non-textile industrially important dyes were also decolorized to different extents. Fourier transform infrared spectroscopy and gas chromatography-mass spectrometer analysis of the ethyl acetate extract of Congo red dye and its metabolites showed that the bacterium could degrade it by the asymmetric cleavage of the azo bonds to yield sodium (4-amino-3-diazenylnaphthalene-1-sulfonate) and phenylbenzene. Sodium (4-amino-3-diazenylnaphthalene-1-sulfonate) was further oxidized by the ortho-cleavage pathway to yield 2-(1-amino-2-diazenyl-2-formylvinyl) benzoic acid. There was induction of the activities of laccase and azoreductase during the decolorization of Congo red, which suggests their probable role in the biodegradation. B. thuringiensis was found to be versatile and could be used for industrial effluent biodegradation.

Keywords

References

  1. Ali, N., A. Hameed, and S. Ahmed. 2008. Physiochemical characterization and bioremediation perspective of textile effluent, dyes and metals by indigenous bacteria. J. Hazard. Mater. 163: 735-743.
  2. Do, T., J. Shen, G. Carwood, and R. Jenkins. 2002. Biotreatment of textile effluent using Pseudomonas spp. imobilised on polymer support, pp 35-45. In I. R. Hardin, D. E. Akin, and S. J. Wilson (eds.). Advanced Biotechnology for Textile Processes. The University of Georgia.
  3. D'Souza, D. T., R. Tiwari, A. K. Sah, and C. Raghukumar. 2007. Enhanced production of laccase by a marine fungus during treatment of colored effluents and synthetic dyes. Enzyme Microb. Technol. 38: 504-511.
  4. Glare, T. R. and M. O'Callaghan. 2000. Bacillus thuringiensis: Biology, Ecology and Safety. John Wiley & Sons, New York.
  5. Goncalves, I. M. C., A. Gomes, R. Bras, M. I. A. Ferra, M. T. P. Amorin, and R. S. Porter. 2000. Biological treatment of effluent containing textile dyes. J. Soc. Dyers Colour. 116: 393-397.
  6. Have, R. T., S. Hartmans, P. J. M. Teunissen, and Y. A. Field. 1997. Purification and characterisation of two peroxidase isozymes produced by Bjerkandera sp. strain BOS55. FEBS Lett. 422: 391-394.
  7. Jadhav, U. U., V. V. Dawkar, D. P. Tamboli, and S. P. Govindwar. 2009. Purification and characterization of veratryl alcohol oxidase from Comamonas sp. UVS and its role in decolorization of textile dyes. Biotechnol. Bioprocess Eng. 14: 369-376. https://doi.org/10.1007/s12257-008-0300-4
  8. Jalandoni-Buan A. C., A. L. A. Decena-Soliven, E. P. Cao, V. L. Barraquio, and W. L. Barraquio. 2010. Characterization and identification of Congo red decolorizing bacteria from monocultures and consortia. Philipp. J. Sci. 139: 71-78.
  9. Kalyani, D. C., P. S. Patil, J. P. Jadhav, and S. P. Govindwar. 2008. Biodegradation of reactive textile dye Red BLI by an isolated bacterium sp. SUK1. Bioresour. Technol. 99: 4635- 4641. https://doi.org/10.1016/j.biortech.2007.06.058
  10. Kalme, S. D., G. K. Parshetti, S. U. Jadhav, and S. P. Govindwar. 2006. Biodegradation of benzidine based dye Direct blue-6 by Pseudomonas desmolyticum NCIM 2112. Bioresour. Technol. 98: 1405-1410.
  11. Maier, J., A. Kandelbauer, A. Erlacher, A. Cavaco-Paulo, and G. M. Gubits. 2004. A new alkali-thermostable azoreductase from Bacillus sp. strain SF. Appl. Environ. Microbiol. 70: 837-844. https://doi.org/10.1128/AEM.70.2.837-844.2004
  12. Marzullo, L., R. Cannio, P. Giardina, M. T. Santini, and G. Sannia. 1995. Veratryl alcohol oxidase from Pleurotus ostreatus participates in lignin biodegradation and prevents polymerization of laccase-oxidized substrates. J. Biol. Chem. 270: 3823-3827. https://doi.org/10.1074/jbc.270.8.3823
  13. Nagai, M., T. Sato, H. Watanabe, K. Saito, M. Kawata, and H. Enei. 2002. Purification and characterization of an extracellular laccase from the edible mushroom Lentinula edodes, and decolorization of chemically different dyes. Appl. Microbiol. Biotechnol. 60: 327-335. https://doi.org/10.1007/s00253-002-1109-2
  14. Olukanni, O. D., A. A. Osuntoki, and G. O. Gbenle. 2006. Textile effluent biodegradation potentials of textile effluentadapted and non-adapted bacteria. Afr. J. Biotechnol. 5: 1980- 1984.
  15. Olukanni, O. D., A. A. Osuntoki, and G. O. Gbenle. 2009. Decolorization of azo dyes by a strain of Micrococcus isolated from a refuse dump soil. Biotechnology 8: 42-48.
  16. Olukanni, O. D., A. A. Osuntoki, D. C. Kalyani, G. O. Gbenle, and S. P. Govindwar. 2010. Decolorization and biodegradation of Reactive Blue 13 by Proteus mirabilis LAG. J. Hazard. Mater. 184: 290-298. https://doi.org/10.1016/j.jhazmat.2010.08.035
  17. Raj, A., R. Chandra, M. M. K. Reddy, H. J. Purohit, and A. Kapley. 2007. Biodegradation of kraft lignin by a newly isolated bacterial strain, Aneurinibacillus aneurinilyticus from the sludge of a pulp paper mill. World J. Microbiol. Biotechnol. 23: 793-799. https://doi.org/10.1007/s11274-006-9299-x
  18. Scherpenisse, P. and A. A. Bergwerff. 2004. Determination of residues of malachite green in finfish by liquid chromatography tandem mass spectrometry Anal. Chim. Acta 529: 173-177
  19. Sponza, D. T. 2002. Necessity of toxicity assessment in Turkish industrial discharges (examples from metal and textile industry effluents). Environ. Monit. Assess. 73: 41-66. https://doi.org/10.1023/A:1012663213153
  20. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software (version 4.0). Mol. Biol. Evol. 24: 596-1599.
  21. Van der Zee, F. 2002. Anaerobic azo dye reduction. Ph.D. Thesis. Wageningen University, The Netherlands.
  22. Verma, P. and D. Madamwar. 2003. Decolorization of synthetic dyes by a newly isolated strain of Serratia marcescens. World J. Microbiol. Biotechnol. 19: 615-618. https://doi.org/10.1023/A:1025115801331
  23. Wesenberg, D., I. Kyriakides, and S. N. Agathos. 2003. Whiterot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol. Adv. 22: 161-187. https://doi.org/10.1016/j.biotechadv.2003.08.011
  24. Zhang, X. and W. Flurkey. 1997. Phenol oxidases in Portabella mushrooms. J. Food Sci. 62: 97-100. https://doi.org/10.1111/j.1365-2621.1997.tb04376.x

Cited by

  1. Decolorization of azo dyes (Direct Blue 151 and Direct Red 31) by moderately alkaliphilic bacterial consortium vol.47, pp.1, 2013, https://doi.org/10.1016/j.bjm.2015.11.013
  2. Efficient solar light-driven degradation of Congo red with novel Cu-loaded Fe3O4@TiO2 nanoparticles vol.24, pp.24, 2017, https://doi.org/10.1007/s11356-017-9571-7
  3. Photocatalytic Degradation of Congo Red Using PbTiO 3 Nanorods Synthesized via a Sonochemical Approach vol.3, pp.42, 2018, https://doi.org/10.1002/slct.201802303
  4. Sustainable synthesis of silver nanoparticles using exposed X-ray sheets and forest-industrial waste biomass: Assessment of kinetic and catalytic properties for degradation of toxic dyes mixture vol.247, pp.None, 2013, https://doi.org/10.1016/j.jenvman.2019.06.078
  5. The heterologous expression, characterization, and application of a novel laccase from Bacillus velezensis vol.713, pp.None, 2013, https://doi.org/10.1016/j.scitotenv.2020.136713
  6. Molecular identification of dye degrading bacterial isolates and FT-IR analysis of degraded products vol.25, pp.4, 2013, https://doi.org/10.4491/eer.2019.224
  7. Effect of pH variation on the activity of green algae (Chlorella Vulgaris) and bacteria (Bacillus subtilis) in remediation of toxic dye (Congo red) vol.779, pp.1, 2013, https://doi.org/10.1088/1755-1315/779/1/012108
  8. Removal of Congo red dyes from aqueous solutions by porous γ-alumina nanoshells vol.286, pp.p2, 2022, https://doi.org/10.1016/j.chemosphere.2021.131769