DOI QR코드

DOI QR Code

Bacillus subtilis as a Tool for Screening Soil Metagenomic Libraries for Antimicrobial Activities

  • Biver, Sophie (Microbiology and Genomics Unit, Gembloux Agro-Bio Tech, University of Liege) ;
  • Steels, Sebastien (Microbiology and Genomics Unit, Gembloux Agro-Bio Tech, University of Liege) ;
  • Portetelle, Daniel (Microbiology and Genomics Unit, Gembloux Agro-Bio Tech, University of Liege) ;
  • Vandenbol, Micheline (Microbiology and Genomics Unit, Gembloux Agro-Bio Tech, University of Liege)
  • 투고 : 2012.12.04
  • 심사 : 2013.02.02
  • 발행 : 2013.06.28

초록

Finding new antimicrobial activities by functional metagenomics has been shown to depend on the heterologous host used to express the foreign DNA. Therefore, efforts are devoted to developing new tools for constructing metagenomic libraries in shuttle vectors replicatable in phylogenetically distinct hosts. Here we evaluated the use of the Escherichia coli-Bacillus subtilis shuttle vector pHT01 to construct a forest-soil metagenomic library. This library was screened in both hosts for antimicrobial activities against four opportunistic bacteria: Proteus vulgaris, Bacillus cereus, Staphylococcus epidermidis, and Micrococcus luteus. A new antibacterial activity against B. cereus was found upon screening in B. subtilis. The new antimicrobial agent, sensitive to proteinase K, was not active when the corresponding DNA fragment was expressed in E. coli. Our results validate the use of pHT01 as a shuttle vector and B. subtilis as a host to isolate new activities by functional metagenomics.

키워드

참고문헌

  1. Apweiler, R., T. K. Attwood, A. Bairoch, A. Bateman, E. Birney, M. Biswas, et al. 2001. The InterPro database, an integrated documentation resource for protein families, domains and functional sites. Nucleic Acids Res. 29: 37-40. https://doi.org/10.1093/nar/29.1.37
  2. Biver, S. and M. Vandenbol. 2013. Characterization of three new carboxylic ester hydrolases isolated by functional screening of a forest soil metagenomic library. J. Ind. Microbiol. Biotechnol. 40: 191-200. https://doi.org/10.1007/s10295-012-1217-7
  3. Cao, G., X. Zhang, L. Zhong, and Z. Lu. 2011. A modified electro-transformation method for Bacillus subtilis and its application in the production of antimicrobial lipopeptides. Biotechnol. Lett. 33: 1047-1051. https://doi.org/10.1007/s10529-011-0531-x
  4. Chen, X. H., J. Vater, J. Piel, P. Franke, R. Scholz, K. Schneider, et al. 2006. Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens FZB 42. J. Bacteriol. 188: 4024-4036. https://doi.org/10.1128/JB.00052-06
  5. Chung, E. J., H. K. Lim, J. C. Kim, G. J. Choi, E. J. Park, M. H. Lee, et al. 2008. Forest soil metagenome gene cluster involved in antifungal activity expression in Escherichia coli. Appl. Environ. Microbiol. 74: 723-730. https://doi.org/10.1128/AEM.01911-07
  6. Courtois, S., C. M. Cappellano, M. Ball, F. X. Francou, P. Normand, G. Helynck, et al. 2003. Recombinant environmental libraries provide access to microbial diversity for drug discovery from natural products. Appl. Environ. Microbiol. 69: 49-55. https://doi.org/10.1128/AEM.69.1.49-55.2003
  7. Craig, J. W., F. Y. Chang, and S. F. Brady. 2009. Natural products from environmental DNA hosted in Ralstonia metallidurans. ACS Chem. Biol. 4: 23-28. https://doi.org/10.1021/cb8002754
  8. Craig, J. W., F. Y. Chang, J. H. Kim, S. C. Obiajulu, and S. F. Brady. 2010. Expanding small-molecule functional metagenomics through parallel screening of broad-host-range cosmid environmental DNA libraries in diverse proteobacteria. Appl. Environ. Microbiol. 76: 1633-1641. https://doi.org/10.1128/AEM.02169-09
  9. Daniel, R. 2004. The soil metagenome - a rich resource for the discovery of novel natural products. Curr. Opin. Biotechnol. 15: 199-204. https://doi.org/10.1016/j.copbio.2004.04.005
  10. Daniel, R. 2005. The metagenomics of soil. Nat. Rev. Microbiol. 3: 470-478. https://doi.org/10.1038/nrmicro1160
  11. Duan, C. J. and J. X. Feng. 2010. Mining metagenomes for novel cellulase genes. Biotechnol. Lett. 32: 1765-1775. https://doi.org/10.1007/s10529-010-0356-z
  12. Felnagle, E. A., E. E. Jackson, Y. A. Chan, A. M. Podevels, A. D. Berti, M. D. McMahon, and M. G. Thomas. 2008. Nonribosomal peptide synthetases involved in the production of medically relevant natural products. Mol. Pharm. 5: 191-211. https://doi.org/10.1021/mp700137g
  13. Gabor, E. M., W. B. Alkema, and D. B. Janssen. 2004. Quantifying the accessibility of the metagenome by random expression cloning techniques. Environ. Microbiol. 6: 879-886. https://doi.org/10.1111/j.1462-2920.2004.00640.x
  14. Gillespie, D. E., S. F. Brady, A. D. Bettermann, N. P. Cianciotto, M. R. Liles, M. R. Rondon, et al. 2002. Isolation of antibiotics turbomycin A and B from a metagenomic library of soil microbial DNA. Appl. Environ. Microbiol. 68: 4301-4306. https://doi.org/10.1128/AEM.68.9.4301-4306.2002
  15. Juncker, A. S., H. Willenbrock, G. Von Heijne, S. Brunak, H. Nielsen, and A. Krogh. 2003. Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci. 12: 1652-1662. https://doi.org/10.1110/ps.0303703
  16. Kennedy, J., N. D. O'Leary, G. S. Kiran, J. P. Morrissey, F. O'Gara, J. Selvin, and A. D. Dobson. 2011. Functional metagenomic strategies for the discovery of novel enzymes and biosurfactants with biotechnological applications from marine ecosystems. J. Appl. Microbiol. 111: 787-799. https://doi.org/10.1111/j.1365-2672.2011.05106.x
  17. Lim, H. K., E. J. Chung, J. C. Kim, G. J. Choi, K. S. Jang, Y. R. Chung, et al. 2005. Characterization of a forest soil metagenome clone that confers indirubin and indigo production on Escherichia coli. Appl. Environ. Microbiol. 71: 7768-7777. https://doi.org/10.1128/AEM.71.12.7768-7777.2005
  18. MacNeil, I. A., C. L. Tiong, C. Minor, P. R. August, T. H. Grossman, K. A. Loiacono, et al. 2001. Expression and isolation of antimicrobial small molecules from soil DNA libraries. J. Mol. Microbiol. Biotechnol. 3: 301-308.
  19. McMahon, M. D., C. Guan, J. Handelsman, and M. G. Thomas. 2012. Metagenomic analysis of Streptomyces lividans reveals host-dependent functional expression. Appl. Environ. Microbiol. 78: 3622-3629. https://doi.org/10.1128/AEM.00044-12
  20. Nimchua, T., T. Thongaram, T. Uengwetwanit, S. Pongpattanakitshote, and L. Eurwilaichitr. 2012. Metagenomic analysis of novel lignocellulose-degrading enzymes from higher termite guts inhabiting microbes. J. Microbiol. Biotechnol. 22: 462-469. https://doi.org/10.4014/jmb.1108.08037
  21. Nishie, M., J. Nagao, and K. Sonomoto. 2012. Antibacterial peptides "bacteriocins": An overview of their diverse characteristics and applications. Biocontrol Sci. 17: 1-16. https://doi.org/10.4265/bio.17.1
  22. Ono, A., R. Miyazaki, M. Sota, Y. Ohtsubo, Y. Nagata, and M. Tsuda. 2007. Isolation and characterization of naphthalenecatabolic genes and plasmids from oil-contaminated soil by using two cultivation-independent approaches. Appl. Microbiol. Biotechnol. 74: 501-510. https://doi.org/10.1007/s00253-006-0671-4
  23. Paik, H. D., S. S. Bae, S. H. Park, and J. G. Pan. 1997. Identification and partial characterization of tochicin, a bacteriocin offduced by Bacillus thuringiensis subsp tochigiensis. J. Ind. Microbiol. Biotechnol. 19: 294-298. https://doi.org/10.1038/sj.jim.2900462
  24. Pushpam, P. L., T. Rajesh, and P. Gunasekaran. 2011. Identification and characterization of alkaline serine protease from goat skin surface metagenome. AMB Express 1: 3. https://doi.org/10.1186/2191-0855-1-3
  25. Reis, J. A., A. T. Paula, S. N. Casarotti, and A. L. B. Penna. 2012. Lactic acid bacteria antimicrobial compounds: Characteristics and applications. Food Eng. Rev. 4: 124-140. https://doi.org/10.1007/s12393-012-9051-2
  26. Rondon, M. R., P. R. August, A. D. Bettermann, S. F. Brady, T. H. Grossman, M. R. Liles, et al. 2000. Cloning the soil metagenome: A strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ. Microbiol. 66: 2541-2547. https://doi.org/10.1128/AEM.66.6.2541-2547.2000
  27. Torsvik, V., F. L. Daae, R. A. Sandaa, and L. Ovreas. 1998. Novel techniques for analysing microbial diversity in natural and perturbed environments. J. Biotechnol. 64: 53-62. https://doi.org/10.1016/S0168-1656(98)00103-5
  28. Torsvik, V., J. Goksoyr, and F. L. Daae. 1990. High diversity in DNA of soil bacteria. Appl. Environ. Microbiol. 56: 782-787.
  29. Walsh, C. T. 2004. Polyketide and nonribosomal peptide antibiotics: Modularity and versatility. Science 303: 1805-1810. https://doi.org/10.1126/science.1094318
  30. Wang, G. Y., E. Graziani, B. Waters, W. Pan, X. Li, J. McDermott, et al. 2000. Novel natural products from soil DNA libraries in a streptomycete host. Org. Lett. 2: 2401-2404. https://doi.org/10.1021/ol005860z
  31. Wexler, M., P. L. Bond, D. J. Richardson, and A. W. Johnston. 2005. A wide host-range metagenomic library from a waste water treatment plant yields a novel alcohol/aldehyde dehydrogenase. Environ. Microbiol. 7: 1917-1926. https://doi.org/10.1111/j.1462-2920.2005.00854.x

피인용 문헌

  1. Characterization of a new oxidant-stable serine protease isolated by functional metagenomics vol.2, pp.1, 2013, https://doi.org/10.1186/2193-1801-2-410
  2. The Combination of Functional Metagenomics and an Oil-Fed Enrichment Strategy Revealed the Phylogenetic Diversity of Lipolytic Bacteria Overlooked by the Cultivation-Based Method vol.29, pp.2, 2013, https://doi.org/10.1264/jsme2.me14002
  3. Functional metagenomics for the investigation of antibiotic resistance vol.5, pp.3, 2014, https://doi.org/10.4161/viru.28196
  4. Improved cultivation and metagenomics as new tools for bioprospecting in cold environments vol.19, pp.1, 2015, https://doi.org/10.1007/s00792-014-0704-3
  5. Biotechnological applications of functional metagenomics in the food and pharmaceutical industries vol.6, pp.None, 2013, https://doi.org/10.3389/fmicb.2015.00672
  6. Biosurfactants Produced by Marine Microorganisms with Therapeutic Applications vol.14, pp.2, 2013, https://doi.org/10.3390/md14020038
  7. Functional metagenomics reveals novel β-galactosidases not predictable from gene sequences vol.12, pp.3, 2013, https://doi.org/10.1371/journal.pone.0172545
  8. Multistep Metabolic Engineering of Bacillus licheniformis To Improve Pulcherriminic Acid Production vol.86, pp.9, 2013, https://doi.org/10.1128/aem.03041-19