DOI QR코드

DOI QR Code

In Vitro Selection of RNA Aptamer Specific to Salmonella Typhimurium

  • Han, Seung Ryul (Department of Molecular Biology, Institute of Nanosensor and Biotechnology, Dankook University) ;
  • Lee, Seong-Wook (Department of Molecular Biology, Institute of Nanosensor and Biotechnology, Dankook University)
  • Received : 2012.12.14
  • Accepted : 2013.01.26
  • Published : 2013.06.28

Abstract

Salmonella is a major foodborne pathogen that causes a variety of human diseases. Development of ligands directly and specifically binding to the Salmonella will be crucial for the rapid detection of, and thus for efficient protection from, the virulent bacteria. In this study, we identified a RNA aptamer-based ligand that can specifically recognize Salmonella Typhimurium through SELEX technology. To this end, we isolated and characterized an RNase-resistant RNA aptamer that bound to the OmpC protein of Salmonella Typhimurium with high specificity and affinity ($K_d$ ~ 20 nM). Of note, the selected aptamer was found to specifically bind to Salmonella Typhimurium, but neither to Gram-positive bacteria (Staphylococcus aureus) nor to other Gram-negative bacteria (Escherichia coli O157:H7). This was evinced by aptamer-immobilized ELISA and aptamer-linked precipitation experiments. This Salmonella species-specific aptamer could be useful as a diagnostic ligand against pathogen-caused foodborne sickness.

Keywords

References

  1. Barlen, B., S. D. Mazumdar, O. Lezrich, P. Kämpfer, and M. Keusgen. 2007. Detection of Salmonella by surface plasmon resonance. Sensors 7: 1427-1446. https://doi.org/10.3390/s7081427
  2. Fenwick, B. W., J. S. Cullor, B. I. Osburn, and H. J. Olander. 1986. Mechanisms involved in protection provided by immunization against core lipopolysaccharides of Escherichia coli J5 from lethal Haemophilus pleuropneumoniae infections in swine. Infect. Immun. 53: 298-304.
  3. Gast, R. K., M. S. Nasir, M. E. Jolley, P. S. Holt, and H. D. Stone. 2002. Detection of experimental Salmonella Enteritidis and S. Typhimurium infections in laying hens by fluorescence polarization assay for egg yolk antibodies. Poult. Sci. 81: 1128-1131. https://doi.org/10.1093/ps/81.8.1128
  4. Hermann, T. and D. J. Patel. 2000. Adaptive recognition by nucleic acid aptamers. Science 287: 820-825. https://doi.org/10.1126/science.287.5454.820
  5. Hwang, B. H., J. S. Cho, H. J. Yeo, J. H. Kim, K. M. Chung, K. Han, et al. 2004. Isolation of specific and high-affinity RNA aptamers against NS3 helicase domain of hepatitis C virus. RNA 10: 1277-1290. https://doi.org/10.1261/rna.7100904
  6. Hyeon, J. Y., J. W. Chon, I. S. Choi, C. Park, D. E. Kim, and K. H. Seo. 2012. Development of RNA aptamers for detection of Salmonella Enteritidis. J. Microbiol. Methods 89: 79-82. https://doi.org/10.1016/j.mimet.2012.01.014
  7. Jeníkova, G., J. Pazlarova, and K. Demnerova. 2000. Detection of Salmonella in food samples by the combination of immunomagnetic separation and PCR assay. Int. Microbiol. 3: 225-229.
  8. Jeong, S., S. R. Han, Y. J. Lee, J. H. Kim, and S. W. Lee. 2010 Identification of RNA aptamer specific to mutant KRAS protein. Oligonucleotides 20: 155-161. https://doi.org/10.1089/oli.2010.0231
  9. Joshi, R., H. Janagama, H. P. Dwivedi, T. S. Kumar, L. A. Jaykus, J. Schefers, and S. Sreevatsan. 2009. Selection, characterization, and application of DNA aptamers for the capture and detection of Salmonella enterica serovars. Mol. Cell Probes 23: 20-28. https://doi.org/10.1016/j.mcp.2008.10.006
  10. Lee, Y. J., S. R. Han, N. Y. Kim, S. H. Lee, J. S. Jeong, and S. W. Lee. 2012. An RNA aptamer that binds carcinoembryonic antigen inhibits hepatic metastasis of colon cancer cells in mice. Gastroenterology 143: 155-165. https://doi.org/10.1053/j.gastro.2012.03.039
  11. Mi, J., Y. Liu, Z. N. Rabbani, Z. Yang, J. H. Urban, B. A. Sullenger, and B. M. Clary. 2010. In vivo selection of tumortargeting RNA motifs. Nat. Chem. Biol. 6: 22-24. https://doi.org/10.1038/nchembio.277
  12. Shangguan, D., Y. Li, Z. Tang, Z. C. Cao, H. W. Chen, P. Mallikaratchy, et al. 2006. Aptamers evolved from live cells as effective molecular probes for cancer study. Proc. Natl. Acad. Sci. USA 103: 11838-11843. https://doi.org/10.1073/pnas.0602615103
  13. Singh, S. P., Y. Upshaw, T. Abdullah, S. R. Singh, and P. E. Klebba. 1992. Structural relatedness of enteric bacterial porins assessed with monoclonal antibodies to Salmonella Typhimurium OmpD and OmpC. J. Bacteriol. 174: 1965-1973. https://doi.org/10.1128/jb.174.6.1965-1973.1992
  14. Singh, S. P., S. R. Singh, Y. U. Williams, L. Jones, and T. Abdullah. 1995. Antigenic determinants of the OmpC porin from Salmonella Typhimurium. Infect. Immun. 63: 4600-4605.
  15. Tuerk, C. and L. Gold. 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249: 505-510. https://doi.org/10.1126/science.2200121
  16. WHO Global Salm-Surv Progress Report II. 2000-2005. WHO Press, World Health Organization, Geneva, Switzerland.
  17. Zuker, M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31: 3406-3415. https://doi.org/10.1093/nar/gkg595

Cited by

  1. In vitro selection of RNA aptamer specific to Staphylococcus aureus vol.64, pp.2, 2013, https://doi.org/10.1007/s13213-013-0720-z
  2. Nucleic Acid Aptamers: Research Tools in Disease Diagnostics and Therapeutics vol.2014, pp.None, 2013, https://doi.org/10.1155/2014/540451
  3. Rapid Fluorescent Detection of Escherichia coli K88 Based on DNA Aptamer Library as Direct and Specific Reporter Combined With Immuno-Magnetic Separation vol.24, pp.4, 2013, https://doi.org/10.1007/s10895-014-1396-x
  4. Identification and application of ssDNA aptamers against H37Rv in the detection of Mycobacterium tuberculosis vol.99, pp.21, 2013, https://doi.org/10.1007/s00253-015-6815-7
  5. Selection of HBsAg-Specific DNA Aptamers Based on Carboxylated Magnetic Nanoparticles and Their Application in the Rapid and Simple Detection of Hepatitis B Virus Infection vol.7, pp.21, 2015, https://doi.org/10.1021/acsami.5b01180
  6. SELEX Modifications and Bioanalytical Techniques for Aptamer-Target Binding Characterization vol.46, pp.6, 2013, https://doi.org/10.1080/10408347.2016.1157014
  7. Aptamers against pathogenic microorganisms vol.42, pp.6, 2013, https://doi.org/10.3109/1040841x.2015.1070115
  8. An Update on Aptamer-Based Multiplex System Approaches for the Detection of Common Foodborne Pathogens vol.10, pp.7, 2013, https://doi.org/10.1007/s12161-017-0814-5
  9. Oligonucleotide aptamers: promising and powerful diagnostic and therapeutic tools for infectious diseases vol.77, pp.2, 2013, https://doi.org/10.1016/j.jinf.2018.04.007
  10. Detecting Biothreat Agents: From Current Diagnostics to Developing Sensor Technologies vol.3, pp.10, 2013, https://doi.org/10.1021/acssensors.8b00420
  11. A sandwich sensor based on imprinted polymers and aptamers for highly specific double recognition of viruses vol.146, pp.12, 2021, https://doi.org/10.1039/d1an00155h
  12. Aptamer-targeting of Aleutian mink disease virus (AMDV) can be an effective strategy to inhibit virus replication vol.11, pp.1, 2013, https://doi.org/10.1038/s41598-021-84223-8