DOI QR코드

DOI QR Code

Integrated Hydrolyzation and Fermentation of Sugar Beet Pulp to Bioethanol

  • Rezic, Tonic (Faculty of Food Technology and Biotechnology, University of Zagreb University) ;
  • Oros, Damir (Faculty of Food Technology and Biotechnology, University of Zagreb University) ;
  • Markovic, Iva (Faculty of Food Technology and Biotechnology, University of Zagreb University) ;
  • Kracher, Daniel (Food Biotechnology Laboratory, Department of Food Sciences and Technology, University of Natural Resources and Life Sciences) ;
  • Ludwig, Roland (Food Biotechnology Laboratory, Department of Food Sciences and Technology, University of Natural Resources and Life Sciences) ;
  • Santek, Bozidar (Faculty of Food Technology and Biotechnology, University of Zagreb University)
  • Received : 2012.10.08
  • Accepted : 2013.06.30
  • Published : 2013.09.28

Abstract

Sugar beet pulp is an abundant industrial waste material that holds a great potential for bioethanol production owing to its high content of cellulose, hemicelluloses, and pectin. Its structural and chemical robustness limits the yield of fermentable sugars obtained by hydrolyzation and represents the main bottleneck for bioethanol production. Physical (ultrasound and thermal) pretreatment methods were tested and combined with enzymatic hydrolysis by cellulase and pectinase to evaluate the most efficient strategy. The optimized hydrolysis process was combined with a fermentation step using a Saccharomyces cerevisiae strain for ethanol production in a single-tank bioreactor. Optimal sugar beet pulp conversion was achieved at a concentration of 60 g/l (39% of dry weight) and a bioreactor stirrer speed of 960 rpm. The maximum ethanol yield was 0.1 g ethanol/g of dry weight (0.25 g ethanol/g total sugar content), the efficiency of ethanol production was 49%, and the productivity of the bioprocess was 0.29 $g/l{\cdot}h$, respectively.

Keywords

References

  1. Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ. 2010. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour. Technol. 101: 4851-4861. https://doi.org/10.1016/j.biortech.2009.11.093
  2. Baciu IE, Jordening HJ. 2004. Kinetics of galacturonic acid release from sugar-beet pulp. Enzyme Microb. Technol. 34: 505-512. https://doi.org/10.1016/j.enzmictec.2003.12.008
  3. Bakker BM, Overkamp KM, Van Maris AJP, Kotter P, Luttik MA, Van Dijken JP, et al. 2001. Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 25: 15-37. https://doi.org/10.1111/j.1574-6976.2001.tb00570.x
  4. Chandra RP, Bura R, Mabee WE, Berlin A, Pan X, Saddler JN. 2007. Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? Adv. Biochem. Eng. Biotechnol. 108: 67-93.
  5. Chang VS, Holtzapple M. 2000. Fundamental factors affecting biomass reactivity. Appl. Biochem. Biotechnol. 84/86: 5-37. https://doi.org/10.1385/ABAB:84-86:1-9:5
  6. Cronwright GR, Rohwer JM, Prior BA. 2002. Metabolic control analysis of glycerol synthesis in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 68: 4448-4456. https://doi.org/10.1128/AEM.68.9.4448-4456.2002
  7. Crowder TM, Rosati JA, Schroeter JD, Hickey AJ, Martonen TB. 2002. Fundamental effects of particle morphology on lung delivery: predictions of Stokes' law and the particular relevance to dry powder inhaler formulation and development. Pharmaceut. Res. 19: 239-245. https://doi.org/10.1023/A:1014426530935
  8. Dickey DS. 2008. Liquid-solid operations and equipment, pp. 6-26. In Genck WJ (ed.). Perry's Chemical Engineers' Handbook, 8th Ed. McGraw-Hill Book Company, New York.
  9. Doran J, Cripe J, Sutton M, Foster B. 2000. Fermentations of pectin-rich biomass with recombinant bacteria to produce fuel ethanol. Appl. Biochem. Biotechnol. 84/86: 141-152. https://doi.org/10.1385/ABAB:84-86:1-9:141
  10. Doran J, Foster B. 2000. Ethanol production from sugar beet pulp using engineered bacteria. Int. Sugar J. 108: 177-180.
  11. Ewanick SM, Bura R, Saddler JN. 2007. Acid-catalyzed steam pretreatment of Lodgepole pine and subsequent enzymatic hydrolysis and fermentation to ethanol. Biotechnol. Bioeng. 8: 737-746.
  12. Foster BL, Dale BE, Doran-Peterson JB. 2001. Enzymatic hydrolysis of ammonia-treated sugar beet pulp. Appl. Biochem. Biotechnol. 91/93: 269-282. https://doi.org/10.1385/ABAB:91-93:1-9:269
  13. Hraste M, Husnjak M. 1995. Suspensioin correlation in the range of critical particle/vessel diameter ratio. Chem. Biochem. Eng. Q. 9: 105-106.
  14. Kim JH, Block DE, Mills DA. 2010. Simultaneous consumption of pentose and hexose sugars: an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass. Appl. Microbiol. Biotechnol. 88: 1077-1085. https://doi.org/10.1007/s00253-010-2839-1
  15. Kootstra AMJ, Beeftink HH, Scott EL, Sanders JPM. 2009. Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw. Biochem. Eng. J. 46: 126-131. https://doi.org/10.1016/j.bej.2009.04.020
  16. Kumar R, Wyman CE. 2009. Does change in accessibility with conversion depend on both the substrate and pretreatment technology? Bioresour. Technol. 100: 4193-202. https://doi.org/10.1016/j.biortech.2008.11.058
  17. Kuhnel S, Schols HA, Gruppen H. 2011. Aiming for the complete utilization of sugar-beet pulp: examination of the effects of mild acid and hydrothermal pretreatment followed by enzymatic digestion. Biotechnol. Biofuels 4: 14. https://doi.org/10.1186/1754-6834-4-14
  18. Micard V, Renard CMGC, Thibault JF. 1996. Enzymatic saccharification of sugar-beet pulp. Enzyme Microb. Technol. 34: 505-512.
  19. Micard V, Renard CMGC, Thibault JF. 1997. Influence of pretreatments on enzymatic degradation of a cellulose-rich residue from sugar-beet pulp. Lebensm. Wiss. Technol. 30: 284-291. https://doi.org/10.1006/fstl.1996.0182
  20. Moosavi-Nasab M, Majdi-Nasab M. 2010. Utilization of sugar beet pulp as a substrate for the fungal production of cellulase and bioethanol. Afr. J. Microbiol. Res. 4: 2556-2561.
  21. Ohgren K, Vehmaanpera J, Siika-aho M, Galbe M, Viikari L, Zacchi G. 2007. High temperature enzymatic prehydrolysis prior to simultaneous saccharification and fermentation of steam-pretreated corn stover for ethanol production. Enzyme Microb. Technol. 40: 607-613. https://doi.org/10.1016/j.enzmictec.2006.05.014
  22. Oosterveld A, Beldman G, Voragen AGJ. 2000. Oxidative cross-linking of pectic polysaccharides from sugar beet pulp. Carbohydr. Res. 328: 199-207. https://doi.org/10.1016/S0008-6215(00)00096-3
  23. Palmqvist B, Wiman M, Liden G. 2011. Effect of mixing on enzymatic hydrolysis of steam-pretreated spruce: a quantitative analysis of conversion and power consumption. Biotechnol. Biofuels 4: 10. https://doi.org/10.1186/1754-6834-4-10
  24. Pan X, Xie D, Gilkes N, Gregg DJ, Saddler JN. 2005. Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content. Appl. Biochem. Biotechnol. 121: 1069-1079.
  25. Sakamoto T, Sakai T. 1995. Analysis of structure of sugarbeet pectin by enzymatic methods. Phytochemistry 39: 821-823. https://doi.org/10.1016/0031-9422(95)00979-H
  26. Spagnuolo M, Crecchio C, Pizzigallo MDR, Ruggiero P. 1999. Fractionation of sugar beet pulp into pectin, cellulose and arabinose by arabinases combined with ultrafiltration. Biotechnol. Bioeng. 64: 685-691. https://doi.org/10.1002/(SICI)1097-0290(19990920)64:6<685::AID-BIT7>3.0.CO;2-E
  27. Spagnuolo M, Crecchio C, Pizzigallo MDR, Ruggiero P. 1997. Synergistic effects of cellulolytic and pectinolytic enzymes in degrading sugar beet pulp. Bioresour. Technol. 60: 215-222. https://doi.org/10.1016/S0960-8524(97)00013-8
  28. Sutton MD, Peterson JBD. 2001. Fermentation of sugar beet pulp for ethanol production using bioengineered Klebsiella oxytoca strain P2. J. Sugar Beet Res. 38: 19-34. https://doi.org/10.5274/jsbr.38.1.19
  29. Talebnia F, Taherzadeh MJ. 2006. In situ detoxification and continuous cultivation of dilute-acid hydrolyzate to ethanol by encapsulated S. cerevisiae. J. Biotechnol. 125: 377-384. https://doi.org/10.1016/j.jbiotec.2006.03.013
  30. Tang Y, An M, Liu K, Nagai S, Shigematsu T, Morimura S, Kida K. 2006. Ethanol production from acid hydrolysate of wood biomass using the flocculating yeast Saccharomyces cerevisiae strain KF-7. Proc. Biochem. 41: 909-914. https://doi.org/10.1016/j.procbio.2005.09.008
  31. Van Maris AJA, Abbott DA, Bellissimi E, Van den Brink J, Kuyper M, Luttik MAH, et al. 2006. Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Van Leeuwenhoek 90: 391-418. https://doi.org/10.1007/s10482-006-9085-7
  32. Yachmenev V, Condon B, Klasson T, Lambert A. 2009. Acceleration of the enzymatic hydrolysis of corn stover and sugar cane bagasse celluloses by low intensity uniform ultrasound. J. Biobased Mater. Bioenergy 3: 25-31. https://doi.org/10.1166/jbmb.2009.1002

Cited by

  1. A Review on the Complete Utilization of the Sugarbeet vol.16, pp.4, 2013, https://doi.org/10.1007/s12355-013-0285-y
  2. Conversion of apple pomace waste to ethanol at industrial relevant conditions vol.100, pp.16, 2013, https://doi.org/10.1007/s00253-016-7665-7
  3. Simultaneous Saccharification and Fermentation of Sugar Beet Pulp for Efficient Bioethanol Production vol.2016, pp.None, 2013, https://doi.org/10.1155/2016/3154929
  4. Optimization of enzymatic sugar beet hydrolysis in a horizontal rotating tubular bioreactor vol.92, pp.3, 2013, https://doi.org/10.1002/jctb.5043
  5. Ethanol from biomass: A comparative overview vol.80, pp.None, 2013, https://doi.org/10.1016/j.rser.2017.05.063
  6. The transcription factor PDR-1 is a multi-functional regulator and key component of pectin deconstruction and catabolism in Neurospora crassa vol.10, pp.None, 2017, https://doi.org/10.1186/s13068-017-0807-z
  7. In-Situ Vacuum Assisted Gas Stripping Recovery System for Ethanol Removal from a Column Bioreactor vol.6, pp.4, 2013, https://doi.org/10.3390/fib6040088
  8. Conversion of sugar beet residues into lipids by Lipomyces starkeyi for biodiesel production vol.19, pp.1, 2013, https://doi.org/10.1186/s12934-020-01467-1
  9. Anaerobic digestion of sugar beet pulp after acid thermal and alkali thermal pretreatments vol.11, pp.3, 2013, https://doi.org/10.1007/s13399-019-00539-6
  10. Identification of the Aldo-Keto Reductase Responsible for d-Galacturonic Acid Conversion to l-Galactonate in Saccharomyces cerevisiae vol.7, pp.11, 2013, https://doi.org/10.3390/jof7110914
  11. Sugar Beet Pulp in the Context of Developing the Concept of Circular Bioeconomy vol.15, pp.1, 2013, https://doi.org/10.3390/en15010175
  12. Sugar beet pulp: Resurgence and trailblazing journey towards a circular bioeconomy vol.312, pp.None, 2013, https://doi.org/10.1016/j.fuel.2021.122953