DOI QR코드

DOI QR Code

Biosynthesis of Silver Nanoparticles by Phytopathogen Xanthomonas oryzae pv. oryzae Strain BXO8

  • Received : 2013.04.17
  • Accepted : 2013.06.07
  • Published : 2013.09.28

Abstract

Extracellular biogenic synthesis of silver nanoparticles with various shapes using the rice bacterial blight bacterium Xanthomonas oryzae pv. oryzae BXO8 is reported. The synthesized silver nanoparticles were characterized by UV-Vis spectroscopy, powder X-ray diffractometry (XRD), scanning electron microscopy, energy dispersive X-ray spectrometry, and high-resolution transmission electron microscopy (HR-TEM). Based on the evidence of HR-TEM, the synthesized particles were found to be spherical, with anisotropic structures such as triangles and rods, with an average size of 14.86 nm. The crystalline nature of silver nanoparticles was evident from the bright circular spots in the SAED pattern, clear lattice fringes in the high-resolution TEM images, and peaks in the XRD pattern. The FTIR spectrum showed that biomolecules containing amide and carboxylate groups are involved in the reduction and stabilization of the silver nanoparticles. Using such a biological method for the synthesis of silver nanoparticles is a simple, viable, cost-effective, and environmentally friendly process, which can be used in antimicrobial therapy.

Keywords

References

  1. Balaji D, Basavaraja S, Deshpande S, Bedre R, Mahesh D, Prabhakar BK, et al. 2009. Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides. Colloids Surf. B Biointerfaces 68: 88-92. https://doi.org/10.1016/j.colsurfb.2008.09.022
  2. Fu MX, Li QB, Sun DH, Lu YH, he N, Deng X, et al. 2006. Rapid preparation process of silver nanoparticles by bioreduction and their characterizations. Chin. J. Chem. Eng. 14: 114-117. https://doi.org/10.1016/S1004-9541(06)60046-3
  3. Gupta A, Silver S. 1998. Molecular genetics: silver as a biocide: will resistance become a problem? Nat. Biotechnol. 16: 888. https://doi.org/10.1038/nbt1098-888
  4. Holzwarth U, Gibson N. 2011. The Scherrer equation versus the 'Debye-Scherrer equation'. Nat. Nanotechnol. 6: 534. https://doi.org/10.1038/nnano.2011.145
  5. Kalimuthu K, Babu RS, Venkataraman D, Mohd B, Gurunathan S. 2008. Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf. B Biointerfaces 65: 150-153. https://doi.org/10.1016/j.colsurfb.2008.02.018
  6. Kalishwaralal K, Deepak V, Ramakumarpandian S, Nellaiah H, Sangiliyandi G. 2008. Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mat. Lett. 62: 4411-4413. https://doi.org/10.1016/j.matlet.2008.06.051
  7. Klaus T, Joerger R, Olsson E, Granqvist CG. 1999. Silver based crystalline nanoparticles, microbially fabricated. Proc. Natl. Acad. Sci. USA 96: 13611-13614. https://doi.org/10.1073/pnas.96.24.13611
  8. Law N, Ansari S, Livens FR, Renshaw JC, Lloyd JR. 2008. The formation of nano-scale elemental silver particles via enzymatic reduction by Geobacter sulfurreducens. Appl. Environ. Microbiol. 4: 7090-7093.
  9. Li XZ, Nikaido H, Williams KE. 1997. Silver-resistant mutants of Escherichia coli display active efflux of $Ag^+$ and are deficient in porins. J. Bacteriol. 179: 6127-6132. https://doi.org/10.1128/jb.179.19.6127-6132.1997
  10. Mie G. 1908. "Beitrage zer optik truber meiden speziell kolloidaler metallosungen." Ann. Phys. (Leipzig) 25: 377-445.
  11. Naik RR, Stringer SJ, Agarwal G, Jones SE, Stone MO. 2002. Biomimetic synthesis and patterning of silver nanoparticles. Nat. Mater. 1: 169-172. https://doi.org/10.1038/nmat758
  12. Nair B, Pradeep T. 2002. Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst. Growth Des. 2: 293-298. https://doi.org/10.1021/cg0255164
  13. Narayanan KB, Sakthivel N. 2011. Heterogeneous catalytic reduction of anthropogenic pollutant, 4-nitrophenol by silverbionanocomposite using Cylindrocladium floridanum. Bioresour. Technol. 102: 10737-10740. https://doi.org/10.1016/j.biortech.2011.08.103
  14. Narayanan KB, Sakthivel N. 2011. Facile green synthesis of gold nanostructures by NADPH-dependent enzyme from the extract of Sclerotiumrolfsii. Colloids Surf. A Physicochem. Eng. Asp. 380: 156-161. https://doi.org/10.1016/j.colsurfa.2011.02.042
  15. Oves M, Khan MS, Zaidi A, Ahmed AS, Ahmed F, Ahmad E, et al. 2013. Antibacterial and cytotoxic efficacy of extracellular silver nanoparticles biofabricated from chromium reducing novel OS4 strain of Stenotrophomonas maltophilia. PLoS One 8: e59140. https://doi.org/10.1371/journal.pone.0059140
  16. Parikh RY, Singh S, Prasad BLV, Patole MS, Sastry M, Shouche YS. 2008. Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella sp.: towards understanding biochemical synthesis mechanism. ChemBioChem 9: 1415-1422. https://doi.org/10.1002/cbic.200700592
  17. Pugazhenthiran N, Anandan S, Kathiravan G, Prakash NKU, Crawford S, Ashokkumar M. 2009. Microbial synthesis of silver nanoparticles by Bacillus sp. J. Nanopart. Res. 11: 1811-1815. https://doi.org/10.1007/s11051-009-9621-2
  18. Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi AA. 2007. Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Proc. Biochem. 42: 919-923. https://doi.org/10.1016/j.procbio.2007.02.005
  19. Sharma VK, Yngard RA, Lin Y. 2009. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv. Colloids Interface Sci. 145: 83-96. https://doi.org/10.1016/j.cis.2008.09.002
  20. Sunkar S, Nachiyar CV. 2012. Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus. Asian Pac. J. Trop. Biomed. 2: 953-959. https://doi.org/10.1016/S2221-1691(13)60006-4
  21. Templeton AC, Pietron JJ, Murray RW, Mulvaney P. 2000. Solvent refractive index and core charge influences on the surface plasmon absorbance of alkanethiolate monolayerprotected gold clusters. J. Phys. Chem. B 104: 564-570. https://doi.org/10.1021/jp991889c
  22. Vaidyanathan R, Kalishwaralal K, Gopalram S, Gurunathan S. 2009. Nanosilver - the burgeoning therapeutic molecule and its green synthesis. Biotechnol. Adv. 27: 924-937. https://doi.org/10.1016/j.biotechadv.2009.08.001
  23. Zhang H, Li Q, Lu Y, Sun D, Lin X, Deng X. 2005. Biosorption and bioreduction of diamine silver complex by Corynebacterium. J. Chem. Technol. Biotechnol. 80: 285-290. https://doi.org/10.1002/jctb.1191

Cited by

  1. Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications vol.99, pp.11, 2013, https://doi.org/10.1007/s00253-015-6622-1
  2. Process optimization for green synthesis of silver nanoparticles by Sclerotinia sclerotiorum MTCC 8785 and evaluation of its antibacterial properties vol.5, pp.1, 2016, https://doi.org/10.1186/s40064-016-2558-x
  3. Antibacterial efficacy of silver nanoparticles synthesized employing Terminalia arjuna bark extract vol.45, pp.6, 2013, https://doi.org/10.1080/21691401.2016.1215328
  4. Green synthesis of silver nanoparticles with antibacterial activities using aqueous Eriobotrya japonica leaf extract vol.8, pp.1, 2013, https://doi.org/10.1088/2043-6254/aa5983
  5. A review on biosynthesis of silver nanoparticles and their biocidal properties vol.16, pp.None, 2013, https://doi.org/10.1186/s12951-018-0334-5
  6. Sustainable green synthesis of silver nanoparticles by using Rangoon creeper leaves extract and their spectral analysis and anti‐bacterial studies vol.13, pp.1, 2013, https://doi.org/10.1049/iet-nbt.2018.5117
  7. Bacteria and nanosilver: the quest for optimal production vol.39, pp.2, 2019, https://doi.org/10.1080/07388551.2018.1555130
  8. Bacterial indoleacetic acid-induced synthesis of colloidal Ag2O nanocrystals and their biological activities vol.42, pp.3, 2013, https://doi.org/10.1007/s00449-018-2044-7
  9. Green Chemistry Synthesis of Silver Nanoparticles and Their Potential Anticancer Effects vol.12, pp.4, 2020, https://doi.org/10.3390/cancers12040855
  10. Biological Nanofactories: Using Living Forms for Metal Nanoparticle Synthesis vol.20, pp.None, 2013, https://doi.org/10.2174/1389557520999201116163012
  11. State of arts on the bio-synthesis of noble metal nanoparticles and their biological application vol.30, pp.None, 2013, https://doi.org/10.1016/j.cjche.2020.11.010
  12. Antimicrobial potential and in vitro cytotoxicity study of polyvinyl pyrollidone‐stabilised silver nanoparticles synthesised from Lysinibacillus boronitolerans vol.15, pp.4, 2021, https://doi.org/10.1049/nbt2.12054