DOI QR코드

DOI QR Code

Comparative Study of the Antioxidative Potential of Common Natural Flavonoids and Isoflavonoids

천연물인 플라보노이드와 이소플라보노이드의 항산화 효과 비교연구

  • Pandey, Ramesh Prasad (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, College of Health Science, Sun Moon University) ;
  • Koirala, Niranjan (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, College of Health Science, Sun Moon University) ;
  • Lee, Joo Ho (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, College of Health Science, Sun Moon University) ;
  • Lee, Hei Chan (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, College of Health Science, Sun Moon University) ;
  • Sohng, Jae Kyung (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, College of Health Science, Sun Moon University)
  • Received : 2013.01.31
  • Accepted : 2013.04.19
  • Published : 2013.09.28

Abstract

The half maximal inhibitory concentration ($IC_{50}$) values and trolox equivalent antioxidant capacity (TEAC) values were calculated by a 2,2'-diphenylpicrylhydrazyl (DPPH) assay and a 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid ($ABTS^{+{\cdot}}$) assay, in order to determine the antioxidative activities of the compounds. On the basis of the DPPH assay, quercetin had the strongest antioxidative potential of the flavonoids, followed in order by fisetin, 7,8-dihydroxyflavone, morin and kaempferol. Quercetin, fisetin and 7,8-dihydroxyflavone had higher antioxidant potentials than butyl hydroxyl anisole. Quercetin had the highest TEAC value amongst the flavonoids and isoflavonoids, followed in order by 3-hydroxyflavone, fisetin, 7,8-dihydroxyflavone and morin. Comparatively, isoflavonoids were found to have significantly weaker antioxidative potential than the flavonoids.

2,2'-diphenylpicrylhydrazyl ($DPPH^{\cdot}$) assay와 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid ($ABTS^+$) decolorization assay는 자연상태의 플라보노이드와 이소플라보노이드의 항산화 활성을 확인하는데 사용된다. 억제중간값(half maximal inhibitory concentration ($IC_{50}$) values)과 트롤록스당량 항산화능값(trolox equivalent antioxidant capacity (TEAC) values)은 $DPPH^{\cdot}$ assay와 $ABTS^+$ assay로 계산되었다. DPPH assay 결과, 쿼세틴(quercetin)은 가장 강한 항산화 능력을 가졌고 뒤이어 피세틴(fisetin), 7,8-디하이드록시플라본(7,8-dihydroxyflavone), 모린(morin), 캠퍼롤(kaempferol) 순이었다. 쿼세틴, 피세틴, 7,8-디하이드록시플라본은 부틸하이드록시 아니솔(butyl hydroxyl anisole)보다 더 높은 항산화 능력을 가졌다. 쿼세틴은 플라보노이드와 이소플로보노이드 중에서 TEAC 값이 가장 높았고 뒤이어 3-하이드록시플로본(3-hydroxyflavone), 피세틴, 7,8-디하이드록시플라본과 모린 순이었다. 다른 나머지 플라보노이드와 이소플라보노이드는 트롤록스 보다 더 약한 $ABTS^+$ 분해능력(scavenging potential)을 가졌다. 테스트된 13개 플라보노이드/이소플라보노이드에서 이소플라보노이드는 플라보노이드보다 매우 약한 항산화 능력을 보였다.

Keywords

References

  1. Bektas T, Dimitra D, Atalay S, Munevver S, Moschos P. 2005. Antimicrobial and antioxidant activites of essential oil and various extracts of Salvia tomentosa Miller. Food Chem. 90: 333-340. https://doi.org/10.1016/j.foodchem.2003.09.013
  2. Brand-Williams W, Cuvelier ME, Berset C. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28: 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
  3. Cao G, Sofic E, Prior RL. 2009. Antioxidant and pro-oxidant behavior of flavonoids: Structure activity relationships. Free Rad. Biol. Med. 22: 749-760.
  4. Halliwell B, Gutteridge JMC. 1988. Free radicals in biology and medicine, 2ed (Clarendan Press, Oxford), UK.
  5. Heijnen CG, Haenen GR, van Acker FA, van der Vijgh WJ, Bast A. 2001. Flavonoids as peroxynitrite scavangers: the role of hydroxyl groups. Toxicol. In Vitro 15: 3-6. https://doi.org/10.1016/S0887-2333(00)00053-9
  6. Henneberg R, Otuki MF, Furman AE, Hermann P, do Nascimento AJ, Leonart MS. 2013. Protective effect of flavonoids against reactive oxygen species production in sickle cell anemia patients treated with hydroxyurea. Rev. Bras. Hematol. Hemoter. 35: 52-55. https://doi.org/10.5581/1516-8484.20130015
  7. Ho R, Violette A, Cressend D, Raharivelomanana P, Carrupt PA, Hostettmann K. 2012. Antioxidant potential and radical scavenging effects of flavonoids from the leaves of Psidium cattleianum grown in French Polynesia. Nat. Prod. Res. 26: 274-277. https://doi.org/10.1080/14786419.2011.585610
  8. Khan RA, Khan MR, Sahreen S. 2010. Evaluation of Launaea procumbens use in renal disorders: A rat model. J. Ethanopharmacol. 128: 452-461. https://doi.org/10.1016/j.jep.2010.01.026
  9. Lobo V, Patil A, Pathak A, Chandra N. 2010. Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn. Rev. 4: 118-126. https://doi.org/10.4103/0973-7847.70902
  10. Madsen HL, Bertelsen G. 1995. Spices as antioxidants. Trends Food Sci. Technol. 6: 271-277. https://doi.org/10.1016/S0924-2244(00)89112-8
  11. Marx JL. 1987. Oxygen free radicals linked to many diseases. Science 235: 529-531. https://doi.org/10.1126/science.3810154
  12. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Evans CR. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  13. Rice-Evans CA, Miller NJ, Paganga G. 1996. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 20: 933-956. https://doi.org/10.1016/0891-5849(95)02227-9
  14. Sanchez-Moreno C, Larrauri JA, Saura-Calixto F. 1999. Free radical scavenging capacity andinhibition of lipid oxidation of wines, grapejuices and related polyphenolic constituents. Food Res. Int. 32: 407-412. https://doi.org/10.1016/S0963-9969(99)00097-6
  15. Scalbert A, Johnson I, Saltmarsh M. 2005. Polyphenols: Antioxidants and beyond. Am. J. Clin. Nut. 81: 2155-2175.
  16. Van Acker SABE, de Groot MJ, van den Berg DJ, Tromp MNJL, den Kelder DO, van der Vijgh WJF, et al. 1996. A quantum chemical explanation of the antioxidant activity of flavonoids. Chem. Res. Toxicol. 9: 1305-1312. https://doi.org/10.1021/tx9600964
  17. Williams GJ, Yang J, Zhang C, Thorson JS. 2010. Recombinant E. coli prototype strains for in vivo glycorandomization. ACS Chem. Biol. Lett. 6: 95-100.
  18. Yu BP. 1994. Cellular defenses against damage from reactive oxygen species. Physiol. Rev. 74: 139-162.

Cited by

  1. The Correlation between Chemical Structures and Antioxidant, Prooxidant, and Antitrypanosomatid Properties of Flavonoids vol.2017, pp.None, 2013, https://doi.org/10.1155/2017/3789856