DOI QR코드

DOI QR Code

Bond Strength of Steel Fiber Incorporated in Ultra High Performance Fiber-Reinforced Concrete

초고성능 섬유보강 콘크리트에 혼입된 강섬유의 부착강도 평가

  • Received : 2013.04.12
  • Accepted : 2013.07.29
  • Published : 2013.10.31

Abstract

This study was intended to estimate the bond strength of steel fiber in UHPFRC through pullout test. The pullout test was carried out with the double-sided pullout specimens with multiple fibers. First, the effect of fiber density on the bond strength was investigated, and the experimental result presented that the density range considered in this study was proved not to produce fiber-to-fiber interaction. The bond strength was estimated from several methods, which are based on the pullout load or energy at peak load, and the total energy absorbed until fibers are pulled out completely. the estimated bond strength obtained from the total energy was shown to be under the influence of the embedded length of fiber. the bond strengths obtained from peak load condition was 6.64 MPa in average, which had little difference compared to 6.46 MPa calculated by peak load only. Considering simplicity of test and analysis, it may be no matter to estimate the bond strength from peak load in pullout test.

이 연구에서는 UHPFRC에 대해 강섬유의 인발실험을 수행하고, 그 결과로부터 매트릭스에 대한 강섬유의 부착강도를 정량적으로 평가하고자 하였다. 실험은 여러 개의 섬유를 이용한 양면 인발실험을 적용하였다. 섬유분포밀도에 따른 영향을 파악해 본 결과, 이 연구에서 고려한 섬유분포밀도의 범위는 섬유 간 상호간섭효과를 나타내지 않는 범위임을 확인하였다. 최대 인발하중 상태의 하중 또는 흡수에너지, 완전 뽑힘 상태의 흡수에너지를 고려한 몇 가지 방법들로 부착강도를 평가한 결과, 완전 뽑힘 상태의 흡수에너지로부터 구한 부착강도는 섬유의 묻힘길이에 영향을 받는 것으로 나타났다. 그리고 최대 인발하중 상태로부터 구한 부착강도는 평균적으로 약 6.64 MPa의 부착강도를 나타냈으며, 이 값은 최대 인발하중만으로 구한 부착강도 6.46 MPa와 비교했을 때 큰 차이가 없는 것으로 나타났다. 실험 및 평가의 용이성을 고려할 때 최대 인발하중만으로 부착강도를 평가해도 무방할 것으로 판단된다.

Keywords

References

  1. Mandel, J., Wei, S., and Said, S., "Studies of the Properties of the Fiber-Matrix Interface in Steel Fiber Reinforced Mortar," ACI Materials Journal, Vol. 84, 1987, pp. 101-109.
  2. Stang, H. and Shah, S. P., "Failure of Fiber-Reinforced Composites by Pull-out Fracture," Journal of Materials Science, Vol. 21, 1986, pp. 953-957. https://doi.org/10.1007/BF01117378
  3. Li, V. C., Wu, C., Wang, S., Ogawa, A., and Saito, T., "Interface Tailoring for Strain-Hardening Polyvinyl Alcohol- Engineered Cementitious Composites (PVA-ECC)," ACI Materials Journal, Vol. 99, No. 5, 2002, pp. 463-472.
  4. Kim, D. J., "Influence of Number of Twist on Tensile Behavior of High Performance Fiber Reinforced Cementitious Composites with Twisted Steel Fibers," Journal of the Korea Concrete Institute, Vol. 22, No. 4, 2010, pp. 575-583. (doi: http://dx.doi.org/10.4334/JKCI.2010.22.4.575)
  5. Lee, H. H. and Lee, H. J., "Characteristic Strength and Deformation of SFRC Considering Steel Fiber Factor and Volume Fraction," Journal of the Korea Concrete Institute, Vol. 16, No. 6, 2004, pp. 759-766. https://doi.org/10.4334/JKCI.2004.16.6.759
  6. Kim, M. H., Kim, J. M., and Nam, S. I., "An Experimental Study on the Development and Application of Steel Fiber Reinforced Concrete," Journal of the Korea Concrete Institute, Vol. 6, No. 1, 1994, pp. 142-151.
  7. Morton, J. and Groves, G. W., "The Cracking of Composites Consisting of Discontinuous Reinforced Concrete," Journal of Material Science, Vol. 9, No. 9, 1974, pp. 1436-1445. https://doi.org/10.1007/BF00552929
  8. Ezeldin, A. S. and Balaguru, B. N., "Bond Behavior of Normal and High-Strength Fiber Reinforced Concrete," ACI Materials Journal, Vol. 86, No. 5, 1989, pp. 515-524.
  9. Shannag, M. J., Brincker, R., and Hansen, W., "Interfacial (Fiber-Matrix) Properties of High-Strength Mortar (150 MPa) from Fiber Pullout," ACI Materials Journal, Vol. 93, No. 5, 1996, pp. 1-7.
  10. Shannag, M. J., Brincker, R., and Hansen, W., "Pullout Behavior of Steel Fibers from Cement-Based Composites," Cement and Concrete Research, Vol. 27, No. 6, 1997, pp. 925-936. https://doi.org/10.1016/S0008-8846(97)00061-6
  11. Orange, G., Acker, P., and Vernet, C., "A New Generation of UHP Concrete: Ductal Damage Resistance and Micromechanical Analysis," Proceedings of Third International Workshop on High Performance Fiber Reinforced Cement Composites (HPFRCC3), Mainz, Germany, 1999, pp. 101-111.
  12. Nammur, G. G. and Naaman, A. E., "A Bond Stress Model for Fiber Reinforced Concrete Based on Bond Stress Slip Relationship," ACI Materials Journal Vol. 86, No. 1, 1989, pp. 45-57.
  13. Lin, Z., Kanda, T., and Li V. C., "On Interface Property Characterization and Performance of Fiber-Reinforced Cementitious Composites," Concrete Science and Engineering, Vol. 1, 1999, pp. 173-174.
  14. Lee, Y., Kang, S. T., and Kim, J. K., "Pullout Behavior of Inclined Steel Fiber in an Ultra-High Strength Cementitious Matrix," Construction and Building Materials, Vol. 24, No. 10, 2010, pp. 2030-2041. (doi: http://dx.doi.org/10.1016/ j.conbuildmat.2010.03.009)
  15. Gray, R. J., "Experimental Techniques for Measuring Fibre/Matrix Interfacial Bond Shear Strength," Testing, Evaluation and Quality Control of Composites, Butterworth Scientific Ltd. UK, 1983, pp. 3-11.
  16. Armelin, H. S. and Banthia, N., "Predicting the Flexural Postcracking Performance of Steel Fiber Reinforced Concrete from the Pullout of Single Fibers," ACI Materials Journal, Vol. 94, No. 1, 1997, pp. 18-31.
  17. Chan, Y. W. and Chu, S. H., "Effect of Silica Fume on Steel Fiber Bond Characteristics in Reactive Powder Concrete," Cement and Concrete Research, Vol. 34, 2004, pp. 1167-1172. (doi: http://dx.doi.org/doi: 10.1016/j.cemconres.2003.12.023)
  18. Park, J. J., Koh, K. T., Kang, S. T., and Kim, S. W., "Influence of Constitute Factor on the Compressive Strength of Ultra-High Strength Steel Fiber Reinforced Cementitious Composites," Journal of the Korea Concrete Institute, Vol. 17, No. 1, 2005, pp. 35-41. https://doi.org/10.4334/JKCI.2005.17.1.035
  19. Richard, P. and Cheyrezy, M. H., "Reactive Powder Concrete with High Ductility and 200-800MPa Compressive Strength," Concrete Technology: Past, Present, and Future, SP-144, American Concrete Institute, Farmington Hills, 1994, pp. 507-518.
  20. Leung, C. K. Y. and Shapiro, N., "Optimal Steel Fiber Strength for Reinforcement of Cementitious Materials," Journal of Materials in Civil Engineering, Vol. 11, No. 2, 1999, pp. 116-123. (doi: http://dx.doi.org/10,1016/(ASCE) 0899-1561(1999)11:2(116)) https://doi.org/10.1061/(ASCE)0899-1561(1999)11:2(116)
  21. Fantilli, A. P., Mihashi, H., and Vallini, P., "Effect of Bond-Slip on the Crack Bridging Capacity of Steel Fibers in Cement-Based Composites," Journal of Materials in Civil Engineering, Vol. 20, No. 9, 2008, pp. 588-598. (doi: http://dx.doi.org/10,1016/(ASCE)0899-1561(2008)20:9 (588)) https://doi.org/10.1061/(ASCE)0899-1561(2008)20:9(588)