DOI QR코드

DOI QR Code

Regenerative Er-doped Fiber Amplifier System for High-repetition-rate Optical Pulses

  • Liu, Yan (College of Science, China Three Gorges University) ;
  • Wu, Kan (Optimus, School of Electrical & Electronic Engineering, Nanyang Technological University) ;
  • Li, Nanxi (Optimus, School of Electrical & Electronic Engineering, Nanyang Technological University) ;
  • Lan, Lanling (College of Science, China Three Gorges University) ;
  • Yoo, Seongwoo (Optimus, School of Electrical & Electronic Engineering, Nanyang Technological University) ;
  • Wu, Xuan (Optimus, School of Electrical & Electronic Engineering, Nanyang Technological University) ;
  • Shum, Perry Ping (Optimus, School of Electrical & Electronic Engineering, Nanyang Technological University) ;
  • Zeng, Shuguang (College of Science, China Three Gorges University) ;
  • Tan, Xinyu (Research Institute For Solar Energy, China Three Gorges University)
  • Received : 2013.05.15
  • Accepted : 2013.08.14
  • Published : 2013.10.25

Abstract

A regenerative Er-doped fiber amplifier system for a high-repetition-rate optical pulse train is investigated for the first time. A signal pulse train with a wavelength tuning range of 18 nm is produced by a passive mode-locked fiber laser based on a nonlinear polarization rotation technique. In order to realize the amplification, an optical delay-line is used to achieve time match between the pulses' interval and the period of pulse running through the regenerative amplifier. The 16 dB gain is obtained for an input pulse train with a launching power of -30.4 dBm, a center wavelength of 1563.4 nm and a repetition rate of 15.3 MHz. The output properties of signal pulses with different center wavelengths are also discussed. The pulse amplification is found to be different from the regenerative amplification system for CW signals.

Keywords

References

  1. P. Deb, K. C. Gupta, and J. Fuloria, "Nd:glass regenerative amplifier with increased bandwidth and high output energy for chirped pulse amplification systems," Appl. Opt. 49, 1698-1706 (2010). https://doi.org/10.1364/AO.49.001698
  2. X. F. Wang, Z. W. Fan, J. Yu, Z. H. Shi, T. Z. Zhao, P. F. Wang, Z. J. Kang, F. Q. Lian, Y. T. Huang, and X. X. Tang, "High energy, high efficiency Nd:glass regenerative amplifier," Advanced Materials Research 529, 105-109 (2012). https://doi.org/10.4028/www.scientific.net/AMR.529.105
  3. P. J. Delfyett, A. Yusim, S. Grantham, S. Gee, K. Gabel, M. Richardson, G. Alphonse, and J. Connolly, "Ultrafast semiconductor laser-diode-seeded Cr:LiSAF regenerative amplifier system," Appl. Opt. 36, 3375-3379 (1997). https://doi.org/10.1364/AO.36.003375
  4. A. V. Okishev and J. D. Zuegel, "Highly stable, all-solidstate Nd:YLF regenerative amplifier," Appl. Opt. 43, 6180-6186 (2004). https://doi.org/10.1364/AO.43.006180
  5. I. Matsushima, H. Yashiro, and T. Tomie, "10KHz 40W Ti:sapphire regenerative ring amplifier," Opt. Lett. 31, 2066- 2068 (2006).
  6. Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, "Ytterbiumdoped large-core fiber laser with 1.36 kW continuous-wave output power," Opt. Express 12, 6088-6092 (2004). https://doi.org/10.1364/OPEX.12.006088
  7. D. J. Richardson, J. Nilsson, and W. A. Clarkson, "High power fiber lasers:current status and future perspectives," J. Opt. Soc. Am. B 27, B63-B92 (2010).
  8. Y.-C. Jeong, A. J. Boyland, J. K. Sahu, S.-H. Chung, J. Nilsson, and D. N. Payne, "Multi-kilowatt single-mode ytterbium-doped large-core fiber laser," J. Opt. Soc. Korea 13, 416-422 (2009). https://doi.org/10.3807/JOSK.2009.13.4.416
  9. T. C. Teyo, P. Poopalan, and H. Ahmad, "Regenerative erbium-doped fibre ring laser amplifier," Electron. Lett. 35, 1471-1472 (1999). https://doi.org/10.1049/el:19990981
  10. T. C. Teyo, N. S. M. Shah, P. Poopalan, and H. Ahmad, "Saturation characteristics of regenerative Erbium-doped fiber amplifier," Jpn. J. Appl. Phys. 41, L830-L832 (2002). https://doi.org/10.1143/JJAP.41.L830
  11. N. S. M. Shah, T. C. Teyo, P. Poopalan, and H. Ahmad, "Unidirectional and bidirectional feedback regenerative erbium-doped fiber amplifier," Jpn. J. Appl. Phys. 41, 960-962 (2002). https://doi.org/10.1143/JJAP.41.L960
  12. B. P. Singh, "Characteristics of regenerative erbium-doped fibre ring amplifier," Electron. Lett. 36, 1013-1014 (2000). https://doi.org/10.1049/el:20000736
  13. A. P. Yang, "Experimental demonstration of a ring-cavity Q-switched fiber regenerative amplifier," Jpn. J. Appl. Phys. 45, 673-675 (2006). https://doi.org/10.1143/JJAP.45.L673
  14. A. K. Sridharan, P. Pax, M. J. Messerly, and J. W. Dawson, "High-gain photonic crystal fiber regenerative amplifier," Opt. Lett. 34, 608-610 (2009). https://doi.org/10.1364/OL.34.000608
  15. R. Xin and J. D. Zuegel, "Amplifying nanosecond optical pulses at 1053 nm with an all-fiber regenerative amplifier," Opt. Lett. 36, 2605-2607 (2011). https://doi.org/10.1364/OL.36.002605
  16. R. Xin and J. D. Zuegel, "A negative-feedback-stabilization system for an all-fiber regenerative amplifier," CLEO: Science and Innovations, CM4D.3 (2012).
  17. K. Wu, P. P. Shum, S. Aditya, C. Ouyang, J. H. Wong, H. Q. Lam, and K. E. K. Lee, "Noise conversion from the pump to the passively mode-locked fiber lasers at 1.5 ${\mu}m$," Opt. Lett. 37, 1901-1903 (2012). https://doi.org/10.1364/OL.37.001901

Cited by

  1. High-power thulium lasers on a silicon photonics platform vol.42, pp.6, 2017, https://doi.org/10.1364/OL.42.001181
  2. Athermal synchronization of laser source with WDM filter in a silicon photonics platform vol.110, pp.21, 2017, https://doi.org/10.1063/1.4984022
  3. Wavelength division multiplexed light source monolithically integrated on a silicon photonics platform vol.42, pp.9, 2017, https://doi.org/10.1364/OL.42.001772
  4. Mode-Locked All-Fiber Lasers at Both Anomalous and Normal Dispersion Regimes Based on Spin-Coated $\hbox{MoS}_{2}$ Nano-Sheets on a Side-Polished Fiber vol.7, pp.1, 2015, https://doi.org/10.1109/JPHOT.2014.2381656
  5. Broadband 2-µm emission on silicon chips: monolithically integrated Holmium lasers vol.26, pp.3, 2018, https://doi.org/10.1364/OE.26.002220
  6. Monolithically integrated erbium-doped tunable laser on a CMOS-compatible silicon photonics platform vol.26, pp.13, 2018, https://doi.org/10.1364/OE.26.016200