DOI QR코드

DOI QR Code

Evaluation of Chromatic-Dispersion-Dependent Four-Wave-Mixing Efficiency in Hydrogenated Amorphous Silicon Waveguides

  • Received : 2013.08.02
  • Accepted : 2013.09.30
  • Published : 2013.10.25

Abstract

We present an experimental and numerical study of spectral profiles of effective group indices of hydrogenated amorphous silicon (a-Si:H) waveguides and of their chromatic-dispersion effect on the four-wave-mixing (FWM) signal generation. The a-Si:H waveguides of 220-nm thickness and three different widths of 400, 450 and 500 nm were fabricated by using the conventional CMOS device processes on a $2-{\mu}m$ thick $SiO_2$ bottom layer deposited on 8-inch Si wafers. Mach-Zehnder interferometers (MZIs) were formed with the a-Si:H waveguides, and used for precise measurement of the effective group indices and thus for determination of the spectral profile of the waveguides' chromatic dispersion. The wavelength ranges for the FWM-signal generation were about 45, 75 and 55 nm for the 400-, 450- and 500-nm-wide waveguides, respectively, at the pump wavelength of 1532 nm. A widest wavelength range for the efficient FWM process was observed with the 450-nm-wide waveguide having a zero-dispersion near the pump wavelength.

Keywords

References

  1. K. Y. Wang and A. C. Foster, "Ultralow power continuouswave frequency conversion in hydrogenated amorphous silicon waveguides," Opt. Lett. 37, 1331-1333 (2012). https://doi.org/10.1364/OL.37.001331
  2. B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. V. Thourhout, P. Emplit, S. Massar, G. Roelkens, and R. Baets, "On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides," Opt. Lett. 36, 552-555 (2011). https://doi.org/10.1364/OL.36.000552
  3. S. Suda, K. Tanizawa, Y. Sakakibara, T. Kamei, K. Nakanishi, E. Itoga, T. Ogasawara, R. Takei, H. Kawashima, S. Namiki, M. Mori, T. Hasama, and H. Ishikawa, "Pattern-effect-free all-optical wavelength conversion using a hydrogenated amorphous silicon waveguide with ultra-fast carrier decay," Opt. Lett. 37, 1382-1384 (2012). https://doi.org/10.1364/OL.37.001382
  4. S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, "Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry," Opt. Commun. 282, 1767-1770 (2009). https://doi.org/10.1016/j.optcom.2009.01.021
  5. S. Zhu, G. Q. Lo, and D. L. Kwong, "Low-loss amorphous silicon wire waveguide for integrated photonics: effect of fabrication process and the thermal stability," Opt. Express 18, 25283-25291 (2010). https://doi.org/10.1364/OE.18.025283
  6. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-963 (2006). https://doi.org/10.1038/nature04932
  7. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Opt. Express 14, 4357-4362 (2006). https://doi.org/10.1364/OE.14.004357
  8. R. M. Osgood Jr., N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I.-W. Hsieh, E. Dulkeith, W. M. J. Green, and Y. A. Vlasov, "Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires," Adv. in Opt. and Photon. 1, 162-235 (2009). https://doi.org/10.1364/AOP.1.000162
  9. D. Dimitropoulos, V. Raghunathan, R. Claps, and B. Jalali, "Phase-matching and nonlinear optical processes in silicon waveguides," Opt. Express 12, 149-160 (2004). https://doi.org/10.1364/OPEX.12.000149
  10. J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, "Generation of correlated photons in nanoscale silicon waveguides," Opt. Express 14, 12388-12393 (2006). https://doi.org/10.1364/OE.14.012388
  11. D. W. Kim, S. H. Km, S. H. Lee, K. H. Kim, J.-M. Lee, and E.-H. Lee, "A new method of measuring localized chromatic dispersion of structured nanowaveguide devices using white-light interferometry," J. Lightwave Technol. 30, 43-48 (2012). https://doi.org/10.1109/JLT.2011.2177638
  12. N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, "Continuous wavelength conversion of 40-Gb/s data over 100 nm using a dispersion-engineered silicon waveguide," IEEE Photon. Technol. Lett. 23, 73-75 (2011). https://doi.org/10.1109/LPT.2010.2090138
  13. http://refractiveindex.info/?group=CRYSTALS&material=a-Si (SOPRA: Amorphous silicon 1).
  14. R. J. Severens, G. J. H. Brussaard, M. C. M. van de Sander, and D. C. Schram, "Characterization of plasma beam deposited amorphous hydrogenated silicon," Appl. Phys. Lett. 67, 491-493 (1995). https://doi.org/10.1063/1.114546
  15. K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed. (Elsevier, London, UK, 2006).
  16. E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, "Group index and group velocity dispersion in silicon-on-insulator photonic wires," Opt. Express 14, 3853-3863 (2006). https://doi.org/10.1364/OE.14.003853
  17. Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005). https://doi.org/10.1038/nature04210
  18. K. Inoue and T. Mukai, "Signal wavelength dependence of gain saturation in a fiber optical parametric amplifier," Opt. Lett. 26, 10-21 (2001). https://doi.org/10.1364/OL.26.000010
  19. H.-S. Jeong, D. W. Kim, K. H. Kim, and J. Lee, "All-optical signal-conversion efficiency with parameter-dependent four-wave-mixing process in silicon nanowaveguide," J. Korean Phys. Soc. 62, 428-434 (2013). https://doi.org/10.3938/jkps.62.428
  20. K. Narayanan and S. F. Preble, "Optical nonlinearities in hydrogenated-amorphous silicon waveguides," Opt. Express 18, 8998-9005 (2010). https://doi.org/10.1364/OE.18.008998
  21. Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, and M. Mori, "Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide," Opt. Express 18, 5668-5673 (2010). https://doi.org/10.1364/OE.18.005668

Cited by

  1. Terabit-Per-Second Optical Super-Channel Receiver Models for Partial Demultiplexing of an OFDM Spectrum vol.19, pp.4, 2015, https://doi.org/10.3807/JOSK.2015.19.4.334