DOI QR코드

DOI QR Code

Liquid Crystal Based Optical Sensor for Imaging Trypsin Activity at Interfaces Between Aqueous Phases and Thermotropic Liquid Crystals

  • Received : 2013.07.03
  • Accepted : 2013.07.15
  • Published : 2013.10.20

Abstract

In this study, we developed a liquid crystal (LC)-based optical sensor for monitoring enzymatic activity through orientational changes in liquid crystals (LCs) coupled to the properties of a poly-${\small{L}}$-lysine (PLL)-based polymeric membrane. We prepared a PLL-based polymeric membrane at the planar interface between the thermotropic liquid crystal and aqueous phases. The PLL-based polymeric membrane was obtained by contacting the PLL solution with water immiscible LCs, 4-cyano-4'-pentyl-biphenyl (5CB) doped with adipoyl chloride. We then investigated the membrane properties by examining the permeability of the membrane to phospholipids, 1,2-didodecanoyl-rac-glycero-3-phosphocholine (DLPC). The permeability of the membrane to transport phospholipids was monitored through the orientational transition of 5CB in contact with the dispersions of DLPC. Since trypsin can enzymatically catalyze the hydrolysis of PLL, we incubated an aqueous trypsin solution with the membrane for 2 h at room temperature to cause an increase in the permeability of the polymeric membrane to DLPC. As a result, a bright to dark optical shift of LCs was observed, which implied that an enzymatic reaction between trypsin and PLL-based membrane occurred. Two control experiments using chymotrypsin and bovine serum albumin (BSA) revealed no sign of improved permeability based on the orientational transition of LCs.

Keywords

References

  1. Brogden, K. A. Nat. Rev. Microbiol. 2005, 3, 238. https://doi.org/10.1038/nrmicro1098
  2. Lopez-Oyama, A. B.; Taboada, P.; Burboa, M. G.; Rodriguez, E.; Mosquera, V.; Valdez, M. A. J. Colloid Interface Sci. 2011, 359, 279. https://doi.org/10.1016/j.jcis.2011.03.081
  3. Kim, M. J.; Zheng, S.; Kim, T. S.; Kim, S. K. Biochip J. 2011, 5, 39. https://doi.org/10.1007/s13206-011-5107-2
  4. Mo, Z. H.; Yang, X. C.; Guo, K. P.; Wen, Z. Y. Anal. Bioanal. Chem. 2007, 389, 493. https://doi.org/10.1007/s00216-007-1477-7
  5. Pandey, A.; Mann, M. Nature 2000, 405, 837. https://doi.org/10.1038/35015709
  6. Redl, G.; Husain, F. T.; Bretbacher, I. E.; Nemes, A.; Cichna- Markl, M. Anal. Bioanal. Chem. 2010, 398, 1735. https://doi.org/10.1007/s00216-010-4069-x
  7. Jang, C. H.; Cheng, L. L.; Olsen, C. W.; Abbott, N. L. Nano Lett. 2006, 6, 1053. https://doi.org/10.1021/nl060625g
  8. Gupta, V. K.; Skaife, J. J.; Dubrovsky, T. B.; Abbott, N. L. Science 1998, 279, 2077. https://doi.org/10.1126/science.279.5359.2077
  9. Jang, C. H.; Tingey, M. L.; Korpi, N. L.; Wiepz, G. J.; Schiller, J. H.; Bertics, P. J.; Abbott, N. L. J. Am. Chem. Soc. 2005, 127, 8912. https://doi.org/10.1021/ja051079g
  10. Brake, J. M.; Daschner, M. K.; Luk, Y. Y.; Abbott, N. L. Science 2003, 302, 2094. https://doi.org/10.1126/science.1091749
  11. Lockwood, N. A.; Mohr, J. C.; Ji, L.; Murphy, C. J.; Palecek, S. R.; de Pablo, J. J.; Abbott, N. L. Adv. Funct. Mater. 2006, 16, 618. https://doi.org/10.1002/adfm.200500768
  12. Yang, Z. Q.; Gupta, J. K.; Kishimoto, K.; Shoji, Y.; Kato, T.; Abbott, N. L. Adv. Funct. Mater. 2010, 20, 2098. https://doi.org/10.1002/adfm.201000367
  13. Hu, Q. Z.; Jang, C. H. ACS Appl. Mater. Inter. 2012, 4, 1791. https://doi.org/10.1021/am300043d
  14. Liu, D. D.; Hu, Q. Z.; Jang, C. H. Colloids and Surfaces B: Biointerfaces 2013, 108, 142. https://doi.org/10.1016/j.colsurfb.2013.02.047
  15. Bai, Y. Q.; Abbott, N. L. Langmuir 2011, 27, 5719. https://doi.org/10.1021/la103301d
  16. Park, J.-S.; Abbott, N. L. Adv. Mater. 2008, 20, 1185. https://doi.org/10.1002/adma.200702012
  17. Lowe, A. M.; Abbott, N. L. Chem. Mater. 2012, 24, 746. https://doi.org/10.1021/cm202632m
  18. Kinsinger, M. I.; Buck, M. E.; Abbott, N. L.; Lynn, D. M. Langmuir 2010, 26, 10234. https://doi.org/10.1021/la100376u
  19. Park, J.-S.; Teren, S.; Tepp, W. H.; Beebe, D. J.; Johnson, E. A.; Abbott, N. L. Chem. Mater. 2006, 18, 6147. https://doi.org/10.1021/cm0606732
  20. Hu, Q. Z.; Jang, C. H. Analyst 2012, 137, 567. https://doi.org/10.1039/c1an15743d
  21. Li, P.; Liu, Y.; Wang, X.; Tang, B. Analyst 2011, 136, 4520. https://doi.org/10.1039/c1an15271h
  22. Neff, P. A.; Serr, A.; Wunderlich, B. K.; Bausch, A. R. ChemPhysChem. 2007, 8, 2133. https://doi.org/10.1002/cphc.200700279
  23. Tan, L. N.; Bertics, P. J.; Abbott, N. L. Langmuir 2011, 27, 1419. https://doi.org/10.1021/la103975s
  24. Fan, Y.; Kobayashi, M.; Kise, H. Polym. J. 2000, 32, 817. https://doi.org/10.1295/polymj.32.817
  25. Barrett, A. J.; Rawlings, N. D.; Woessner, J. F., Eds.; Handbook of Proteolytic Enzymes; Academic Press: London, 2004; p 1089.
  26. Voet, D.; Voet, J. G.; Pratt, C. W. Fundamentals of Biochemistry; Wiley: New York, 1999.

Cited by

  1. Detection of cholesterol molecules with a liquid crystal-based pH-driven sensor vol.50, pp.13, 2015, https://doi.org/10.1007/s10853-015-9027-8
  2. Recent developments in protease activity assays and sensors vol.142, pp.11, 2017, https://doi.org/10.1039/C6AN02647H