DOI QR코드

DOI QR Code

Optical CBC Block Encryption Method using Free Space Parallel Processing of XOR Operations

XOR 연산의 자유 공간 병렬 처리를 이용한 광학적 CBC 블록 암호화 기법

  • Gil, Sang Keun (Department of Electronic Engineering, The University of Suwon)
  • 길상근 (수원대학교 전자공학과)
  • Received : 2013.09.03
  • Accepted : 2013.10.10
  • Published : 2013.10.25

Abstract

In this paper, we propose a modified optical CBC(Cipher Block Chaining) encryption method using optical XOR logic operations. The proposed method is optically implemented by using dual encoding and a free-space interconnected optical logic gate technique in order to process XOR operations in parallel. Also, we suggest a CBC encryption/decryption optical module which can be fabricated with simple optical architecture. The proposed method makes it possible to encrypt and decrypt vast two-dimensional data very quickly due to the fast optical parallel processing property, and provides more security strength than the conventional electronic CBC algorithm because of the longer security key with the two-dimensional array. Computer simulations show that the proposed method is very effective in CBC encryption processing and can be applied to even ECB(Electronic Code Book) mode and CFB(Cipher Feedback Block) mode.

본 논문에서는 블록암호화의 CBC(Cipher Block Chaining) 방식을 광학적인 XOR 연산을 이용하여 새로운 변형된 CBC 암호화 및 복호화 시스템을 제안한다. 제안한 방법은 광학적 XOR 연산의 병렬 처리를 위해 이중 인코딩 방법과 자유 공간 연결 광논리 게이트 방법을 사용한다. 또한 제안된 XOR 연산 기반의 CBC 암호화 방식의 광학적 구성도를 공학적으로 실제 제작 구현 가능한 광 모듈 형태의 광 암호화/복호화 장치로 제안한다. 제안된 방법은 기존의 CBC 방식을 광학적으로 구현했기 때문에 기존의 전자적인 CBC 방식의 장점과 광학적인 고속성과 병렬 처리의 특성으로 인해 많은 정보를 빠른 속도로 암호화 및 복호화가 가능하다. 또한, 광 병렬 처리의 특성상 데이터가 2차원으로 배열되어 데이타 크기가 증가된 평문 데이터와 암호키를 사용함으로써 기존의 전자적 CBC 방식보다도 한층 더 암호 강도가 강력해진 암호화 시스템을 제공한다. 컴퓨터 시뮬레이션 결과는 제안한 기법이 CBC 모드의 암호화 및 복호화 과정에 효율적임을 보여준다. 한편 제안된 방식은 CBC 방식 외에 ECB(Electronic Code Book) 방식과 CFB(Cipher Feedback Block) 방식에도 적용할 수 있다.

Keywords

References

  1. B. Schneier, Applied Cryptography, 2nd ed. (John Wiley, New York, USA, 1994).
  2. C. Li, S. Li, M. Asim, J. Nunez, G. Alvarez, and G. Chen, "On the security defects of an image encryption scheme," Ima. and Vis. Comp. 27, 1371-1381 (2009). https://doi.org/10.1016/j.imavis.2008.12.008
  3. B. Javidi and J. L. Horner, "Optical pattern recognition for validation and security verification," Opt. Eng. 33, 1752-1756 (1994). https://doi.org/10.1117/12.170736
  4. J. F. Heanue, M. C. Bashaw, and L. Hesselink, "Encrypted holographic data storage based on orthogonal-phase-code multiplexing," Appl. Opt. 34, 6012-6015 (1995). https://doi.org/10.1364/AO.34.006012
  5. P. Refregier and B. Javidi, "Optical image encryption based on input plane and Fourier plane random encoding," Opt. Lett. 20, 767-769 (1995). https://doi.org/10.1364/OL.20.000767
  6. B. Javidi, A. Sergent, and E. Ahouzi, "Performance of double phase encoding encryption technique using binarized encrypted images," Opt. Eng. 37, 565-569 (1998). https://doi.org/10.1117/1.601645
  7. D. Weber and J. Trolinger, "Novel implementation of nonlinear joint transform correlators in optical security and validation," Opt. Eng. 38, 62-68 (1999). https://doi.org/10.1117/1.602062
  8. T. Nomura and B. Javidi, "Optical encryption using a joint transform correlator architecture," Opt. Eng. 39, 2031-2035 (1999).
  9. E. Cuche, F. Bevilacqua, and C. Depeursinge, "Digital holography for quantitative phase-contrast imaging," Opt. Lett. 24, 291-293 (1999). https://doi.org/10.1364/OL.24.000291
  10. G. Unnikrishnan and K. Singh, "Double random fractional Fourier domain encoding for optical security," Opt. Eng. 39, 2853-2859 (2000). https://doi.org/10.1117/1.1313498
  11. X. Meng, L. Z. Cai, X. L. Yang, X. X. Shen, and G. Y. Dong, and Y. R. Wang, "Two-step phase-shifting interferometry and its application in image encryption," Opt. Lett. 31, 1414-1416 (2006). https://doi.org/10.1364/OL.31.001414
  12. S. H. Jeon, Y. G. Hwang, and S. K. Gil, "Optical encryption of gray-level image using on-axis and 2-f digital holography with two-step phase-shifting method," Opt. Rev. 15, 181-186 (2008). https://doi.org/10.1007/s10043-008-0029-5
  13. S. H. Jeon and S. K. Gil, "Dual optical encryption for binary data and secret key using phase-shifting digital holography," J. Opt. Soc. Korea 16, 263-269 (2012). https://doi.org/10.3807/JOSK.2012.16.3.263
  14. G.-S. Lin, H. T. Chang, W.-N. Lie, and C.-H. Chuang, "Public-key-based optical image cryptosystem based on data embedding techniques," Opt. Eng. 42, 2331-2339 (2003). https://doi.org/10.1117/1.1588660
  15. T. Nomura, A. Okazaki, M. Kameda, and Y. Morimoto, "Image reconstruction from compressed encrypted digital hologram," Opt. Eng. 44, 2313-2320 (2005).
  16. J.-W. Han, C.-S. Park, D.-H. Ryu, and E.-S. Kim, "Optical image encryption based on XOR operations," Opt. Eng. 38, 47-54 (1999). https://doi.org/10.1117/1.602060
  17. G. Unnikrishnan, M. Pohit, and K. Singh, "A polarization encoded encryption system using ferroelectric spatial light modulator," Opt. Commun. 185, 25-31 (2000). https://doi.org/10.1016/S0030-4018(00)00977-9
  18. J. Y. Kim, S. J. Park, C. S. Kim, J.-G. Bae, and S.-J. Kim, "Optical image encryption using interferometry-based phase mask," Electron. Lett. 36, 874-875 (2000). https://doi.org/10.1049/el:20000674
  19. C.-M. Shin and S.-J. Kim, "Image encryption using modified exclusive-OR rules and phase-wrapping technique," Opt. Commun. 254, 67-75 (2005). https://doi.org/10.1016/j.optcom.2005.05.026
  20. S. Bahrami and M. Naderi, "Image encryption using a lightweight stream encryption algorithm," Adv. in Mult. 2012, 1-8 (2012).
  21. T. Naughton, B. Hennelly, and T. Dowling, "Introducing secure modes of operation for optical encryption," J. Opt. Soc. Am. A 26, 2608-2617 (2008).

Cited by

  1. Optical Implementation of Asymmetric Cryptosystem Combined with D-H Secret Key Sharing and Triple DES vol.19, pp.6, 2015, https://doi.org/10.3807/JOSK.2015.19.6.592
  2. A Study of Definition of Security Requirements on Encryption and Audit Logging vol.19, pp.9, 2014, https://doi.org/10.9708/jksci.2014.19.9.085
  3. Application to 2-D Page-oriented Data Optical Cryptography Based on CFB Mode vol.19, pp.3, 2015, https://doi.org/10.7471/ikeee.2015.19.3.424
  4. Optical System Implementation of OFB Block Encryption Algorithm vol.18, pp.3, 2014, https://doi.org/10.7471/ikeee.2014.18.3.328