DOI QR코드

DOI QR Code

Performance-determining factors in flexible transparent conducting single-wall carbon nanotube film

  • Song, Young Il (School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Lee, Jung Woo (School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Kim, Tae Yoo (School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Jung, Hwan Jung (Institute of Advanced Composites Materials, Korea Institute of Science and Technology) ;
  • Jung, Yong Chae (Institute of Advanced Composites Materials, Korea Institute of Science and Technology) ;
  • Suh, Su Jeung (School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Yang, Cheol-Min (Institute of Advanced Composites Materials, Korea Institute of Science and Technology)
  • Received : 2013.08.25
  • Accepted : 2013.10.05
  • Published : 2013.10.31

Abstract

Flexible transparent conducting films (TCFs) were fabricated by dip-coating single-wall carbon nanotubes (SWCNTs) onto a flexible polyethylene terephthalate (PET) film. The amount of coated SWCNTs was controlled simply by dipping number. Because the performance of SWCNT-based TCFs is influenced by both electrical conductance and optical transmittance, we evaluated the film performance by introducing a film property factor using both the number of interconnected SWCNT bundles at intersection points, and the coverage of SWCNTs on the PET substrate, in field emission scanning electron microscopic images. The microscopic film property factor was in an excellent agreement with the macroscopic one determined from electrical conductance and optical transmittance measurements, especially for a small number of dippings. Therefore, the most crucial factor governing the performance of the SWCNT-based TCFs is a SWCNT-network structure with a large number of intersection points for a minimum amount of deposited SWCNTs.

Keywords

References

  1. Wu Z, Chen Z, Du X, Logan JM, Sippel J, Nikolou M, Kamaras K, Reynolds JR, Tanner DB, Hebard AF, Rinzler AG. Transparent, conductive carbon nanotube films. Science, 305, 1273 (2004). http://dx.doi.org/10.1126/science.1101243.
  2. Cao Q, Hur SH, Zhu ZT, Sun YG, Wang CJ, Meitl MA, Shim M, Rogers JA. Highly bendable, transparent thin-film transistors that use carbon-nanotube-based conductors and semiconductors with elastomeric dielectrics. Adv Mater, 18, 304 (2006). http://dx.doi.org/10.1002/adma.200501740.
  3. Fanchini G, Unalan HE, Chhowalla M. Optoelectronic properties of transparent and conducting single-wall carbon nanotube thin films. Appl Phys Lett, 88, 191919 (2006). http://dx.doi.org/10.1063/1.2202703.
  4. De Volder MFL, Tawfick SH, Baughman RH, Hart AJ. Carbon nanotubes: present and future commercial applications. Science, 339, 535 (2013). http://dx.doi.org/10.1126/science.1222453.
  5. Park HG, Lee MJ, Kim K, Seo DS. Transparent conductive single wall carbon nanotube network films for liquid crystal displays. ECS Solid State Lett, 1, R31 (2012). http://dx.doi.org/10.1149/2.008206ssl.
  6. Yang Y, Jeong S, Hu L, Wu H, Lee SW, Cui Y. Transparent lithiumion batteries. Proc Natl Acad Sci U S A, 108, 13013 (2011). http://dx.doi.org/10.1073/pnas.1102873108.
  7. Zhang M, Fang S, Zakhidov AA, Lee SB, Aliev AE, Williams CD, Atkinson KR, Baughman RH. Strong, transparent, multifunctional, carbon nanotube sheets. Science, 309, 1215 (2005). http://dx.doi.org/10.1126/science.1115311.
  8. Lee SH, Teng CC, Ma CCM, Wang I. Highly transparent and conductive thin films fabricated with nano-silver/double-walled carbon nanotube composites. J Colloid Interface Sci, 364, 1 (2011). http://dx.doi.org/10.1016/j.jcis.2011.08.029.
  9. Kim MJ, Shin DW, Kim JY, Park SH, Han It, Yoo JB. The production of a flexible electroluminescent device on polyethylene terephthalate films using transparent conducting carbon nanotube electrode. Carbon, 47, 3461 (2009). http://dx.doi.org/10.1016/j.carbon.2009.08.013.
  10. Shin EC, Jeong GH. Fabrication of transparent, flexible and conductive films using as-grown few-walled carbon nanotubes. Curr Appl Phys, 11, S73 (2011). http://dx.doi.org/10.1016/j.cap.2011.07.012.
  11. Meitl MA, Zhou Y, Gaur A, Jeon S, Usrey ML, Strano MS, Rogers JA. Solution casting and transfer printing single-walled carbon nanotube films. Nano Lett, 4, 1643 (2004). http://dx.doi.org/10.1021/nl0491935.
  12. Saran N, Parikh K, Suh DS, Munoz E, Kolla H, Manohar SK. Fabrication and characterization of thin films of single-walled carbon nanotube bundles on flexible plastic substrates. J Am Chem Soc, 126, 4462 (2004). http://dx.doi.org/10.1021/ja037273p.
  13. Shimoda H, Oh SJ, Geng HZ, Walker RJ, Zhang XB, McNeil LE, Zhou O. Self-assembly of carbon nanotubes. Adv Mater, 14, 899 (2002). http://dx.doi.org/10.1002/1521-4095(20020618)14:12<899::AID-ADMA899>3.0.CO;2-2.
  14. Song YI, Yang CM, Kim DY, Kanoh H, Kaneko K. Flexible transparent conducting single-wall carbon nanotube film with network bridging method. J Colloid Interface Sci, 318, 365 (2008). http://dx.doi.org/10.1016/j.jcis.2007.10.051.
  15. Pasquier AD, Unalan HE, Kanwal A, Miller S, Chhowalla M. Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells. Appl Phys Lett, 87, 203511 (2005). http://dx.doi.org/10.1063/1.2132065.
  16. Kim KK, Bae DJ, Yang CM, An KH, Lee JY, Lee YH. Nanodispersion of single-walled carbon nanotubes using dichloroethane. J Nanosci Nanotechnol, 5, 1055 (2005). http://dx.doi.org/10.1166/jnn.2005.159.
  17. Song YI, Kim GY, Choi HK, Jeong HJ, Kim KK, Yang CM, Lim SC, An KH, Jung KT, Lee YH. Fabrication of carbon nanotube field emitters using a dip-coating method. Chem Vap Depos, 12, 375 (2006). http://dx.doi.org/10.1002/cvde.200506442.
  18. Hu L, Hecht DS, Gruner G. Percolation in transparent and conducting carbon nanotube networks. Nano Lett, 4, 2513 (2004). http://dx.doi.org/10.1021/nl048435y.
  19. Unalan HE, Fanchini G, Kanwal A, Du Pasquier A, Chhowalla M. Design criteria for transparent single-wall carbon nanotube thin-film transistors. Nano Lett, 6, 677 (2006). http://dx.doi.org/10.1021/nl052406l.
  20. Darhuber AA, Troian SM, Davis JM, Miller SM, Wagner S. Selective dip-coating of chemically micropatterned surfaces. J Appl Phys, 88, 5119 (2000). http://dx.doi.org/10.1063/1.1317238.

Cited by

  1. Superhydrophobic carbon-based materials: a review of synthesis, structure, and applications vol.15, pp.2, 2014, https://doi.org/10.5714/CL.2014.15.2.089
  2. Electromagnetic Interference Shielding Characteristics of Electroless Nickel Plated Carbon Nanotubes vol.25, pp.3, 2014, https://doi.org/10.14478/ace.2014.1021