DOI QR코드

DOI QR Code

Effect of Korean Red Ginseng on radiation-induced bone loss in C3H/HeN mice

  • Lee, Jin-Hee (General Toxicity Team, Korea Testing & Research Institute) ;
  • Lee, Hae-June (Radiological Effect Research Department, Korea Institute of Radiological & Medical Science) ;
  • Yang, Miyoung (College of Veterinary Medicine, Chonnam National University) ;
  • Moon, Changjong (College of Veterinary Medicine, Chonnam National University) ;
  • Kim, Jong-Choon (College of Veterinary Medicine, Chonnam National University) ;
  • Bae, Chun-Sik (College of Veterinary Medicine, Chonnam National University) ;
  • Jo, Sung-Kee (Division of Radiation Biotechnology, Advanced Radiation Technology Institute) ;
  • Jang, Jong-Sik (Faculty of Animal Science & Biotechnology, Kyungpook National University) ;
  • Kim, Sung-Ho (College of Veterinary Medicine, Chonnam National University)
  • Received : 2013.01.09
  • Accepted : 2013.05.29
  • Published : 2013.10.15

Abstract

This study investigated the effects of Korean Red Ginseng (KRG) on radiation-induced bone loss in C3H/HeN mice. C3H/HeN mice were divided into sham and irradiation (3 Gy, gamma-ray) groups. The irradiated mice were treated for 12 wk with vehicle, KRG (per os, p.o.) or KRG (intraperitoneal). Serum alkaline phosphatase (ALP), tartrate-resistant acid phosphatase, estradiol level, and biomechanical properties were measured. Tibiae were analyzed using micro-computed tomography. Treatment of KRG (p.o., 250 mg/kg of body weight/d) significantly preserved trabecular bone volume, trabecular number, structure model index, and bone mineral density of proximal tibia metaphysic, but did not alter the uterus weight of the mice. Serum ALP level was slightly reduced by KRG treatment. However, grip strength, mechanical property, and cortical bone architecture did not differ among the experimental groups. The results indicate that KRG can prevent radiation-induced bone loss in mice.

Keywords

References

  1. Howland WJ, Loeffler RK, Starchman DE, Johnson RG. Postirradiation atrophic changes of bone and related complications. Radiology 1975;117:677-685. https://doi.org/10.1148/117.3.677
  2. Ergun H, Howland WJ. Postradiation atrophy of mature bone. CRC Crit Rev Diagn Imaging 1980;12:225-243.
  3. Chen HH, Lee BF, Guo HR, Su WR, Chiu NT. Changes in bone mineral density of lumbar spine after pelvic radiotherapy. Radiother Oncol 2002;62:239-242. https://doi.org/10.1016/S0167-8140(02)00002-6
  4. Liu Z, Piao J, Pang L, Qing X, Nan S, Pan Z, Guo Y, Wang X, Li F, Liu J et al. The diagnostic criteria for primary osteoporosis and the incidence of osteoporosis in China. J Bone Miner Metab 2002;20:181-189. https://doi.org/10.1007/s007740200026
  5. Harada S, Rodan GA. Control of osteoblast function and regulation of bone mass. Nature 2003;423:349-355. https://doi.org/10.1038/nature01660
  6. Nocerino E, Amato M, Izzo AA. The aphrodisiac and adaptogenic properties of ginseng. Fitoterapia 2000;71 Suppl 1:S1-S5. https://doi.org/10.1016/S0367-326X(00)00170-2
  7. Tang W, Eisenbrand G. Panax ginseng C. A. Meyer. In: Tang W, Eisenbrand G, editors. Chinese drugs of plant origin: chemistry, pharmacology, and use in traditional and modern medicine. London: Springer, 1992. p.711-737.
  8. Park JD. Recent studies on the chemical constituents of Korean ginseng (Panax ginseng C. A. Meyer). Korean J Ginseng Sci 1996;20:389-415.
  9. Gillis CN. Panax ginseng pharmacology: a nitric oxide link? Biochem Pharmacol 1997;54:1-8. https://doi.org/10.1016/S0006-2952(97)00193-7
  10. Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 1999;58:1685-1693. https://doi.org/10.1016/S0006-2952(99)00212-9
  11. Lee HJ, Kim SR, Kim JC, Kang CM, Lee YS, Jo SK, Kim TH, Jang JS, Nah SY, Kim SH. In vivo radioprotective effect of Panax ginseng C.A. Meyer and identification of active ginsenosides. Phytother Res 2006;20:392-395. https://doi.org/10.1002/ptr.1867
  12. Lee TK, Johnke RM, Allison RR, O’Brien KF, Dobbs LJ Jr. Radioprotective potential of ginseng. Mutagenesis 2005;20:237-243. https://doi.org/10.1093/mutage/gei041
  13. Verma P, Sharma P, Parmar J, Sharma P, Agrawal A, Goyal PK. Amelioration of radiation-induced hematological and biochemical alterations in Swiss albino mice by Panax ginseng extract. Integr Cancer Ther 2011;10:77-84. https://doi.org/10.1177/1534735410375098
  14. Park E, Hwang I, Song JY, Jee Y. Acidic polysaccharide of Panax ginseng as a defense against small intestinal damage by whole-body gamma irradiation of mice. Acta Histochem 2011;113:19-23. https://doi.org/10.1016/j.acthis.2009.07.003
  15. Shin HR, Kim JY, Yun TK, Morgan G, Vainio H. The cancer-preventive potential of Panax ginseng: a review of human and experimental evidence. Cancer Causes Control 2000;11:565-576. https://doi.org/10.1023/A:1008980200583
  16. Meyer OA, Tilson HA, Byrd WC, Riley MT. A method for the routine assessment of fore- and hindlimb grip strength of rats and mice. Neurobehav Toxicol 1979;1:233-236.
  17. Sawajiri M, Mizoe J, Tanimoto K. Changes in osteoclasts after irradiation with carbon ion particles. Radiat Environ Biophys 2003;42:219-223. https://doi.org/10.1007/s00411-003-0204-9
  18. Vit JP, Ohara PT, Tien DA, Fike JR, Eikmeier L, Beitz A, Wilcox GL, Jasmin L. The analgesic effect of low dose focal irradiation in a mouse model of bone cancer is associated with spinal changes in neuro-mediators of nociception. Pain 2006;120:188-201. https://doi.org/10.1016/j.pain.2005.10.033
  19. Furstman LL. Effect of radiation on bone. J Dent Res 1972;51:596-604. https://doi.org/10.1177/00220345720510025901
  20. Willey JS, Lloyd SA, Robbins ME, Bourland JD, Smith-Sielicki H, Bowman LC, Norrdin RW, Bateman TA. Early increase in osteoclast number in mice after whole-body irradiation with 2 Gy X rays. Radiat Res 2008;170:388-392. https://doi.org/10.1667/RR1388.1
  21. Hannon RA, Eastell R. Biochemical markers of bone turnover and fracture prediction. J Br Menopause Soc 2003;9:10-15.
  22. Garnero P, Hausherr E, Chapuy MC, Marcelli C, Grandjean H, Muller C, Cormier C, Breart G, Meunier PJ, Delmas PD. Markers of bone resorption predict hip fracture in elderly women: the EPIDOS Prospective Study. J Bone Miner Res 1996;11:1531-1538.
  23. He L, Lee J, Jang JH, Lee SH, Nan MH, Oh BC, Lee SG, Kim HH, Soung NK, Ahn JS et al. Ginsenoside Rh2 inhibits osteoclastogenesis through down-regulation of NF-${\kappa}B$, NFATc1 and c-Fos. Bone 2012;50:1207-1213. https://doi.org/10.1016/j.bone.2012.03.022
  24. Cheng B, Li J, Du J, Lv X, Weng L, Ling C. Ginsenoside Rb1 inhibits osteoclastogenesis by modulating NF-${\kappa}B$ and MAPKs pathways. Food Chem Toxicol 2012;50:1610-1615. https://doi.org/10.1016/j.fct.2012.02.019
  25. Liu J, Shiono J, Shimizu K, Yu H, Zhang C, Jin F, Kondo R. 20(R)-ginsenoside Rh2, not 20(S), is a selective osteoclastgenesis inhibitor without any cytotoxicity. Bioorg Med Chem Lett 2009;19:3320-3323. https://doi.org/10.1016/j.bmcl.2009.04.054
  26. Bhattacharya A, Watts NB, Davis K, Kotowski S, Shukla R, Dwivedi AK, Coleman R. Dynamic bone quality: a noninvasive measure of bone’s biomechanical property in osteoporosis. J Clin Densitom 2010;13:228-236. https://doi.org/10.1016/j.jocd.2010.01.001
  27. Di Monaco M, Di Monaco R, Manca M, Cavanna A. Handgrip strength is an independent predictor of distal radius bone mineral density in postmenopausal women. Clin Rheumatol 2000;19:473-476. https://doi.org/10.1007/s100670070009
  28. Bandstra ER, Pecaut MJ, Anderson ER, Willey JS, De Carlo F, Stock SR, Gridley DS, Nelson GA, Levine HG, Bateman TA. Long-term dose response of trabecular bone in mice to proton radiation. Radiat Res 2008;169:607-614. https://doi.org/10.1667/RR1310.1

Cited by

  1. Ginsenoside Re Promotes Osteoblast Differentiation in Mouse Osteoblast Precursor MC3T3-E1 Cells and a Zebrafish Model vol.22, pp.1, 2016, https://doi.org/10.3390/molecules22010042
  2. Gamma irradiation-induced liver injury and its amelioration by red ginseng extract vol.13, pp.4, 2017, https://doi.org/10.1007/s13273-017-0050-5
  3. Neuroprotective effect of Korea Red Ginseng extract on 1-methyl-4-phenylpyridinium-induced apoptosis in PC12 Cells vol.20, pp.6, 2016, https://doi.org/10.1080/19768354.2016.1257510
  4. Protective Effect of Ginseng on Salivary Dysfunction Following Radioiodine Therapy in a Mouse Model vol.28, pp.8, 2018, https://doi.org/10.1089/thy.2017.0379
  5. Antiosteoporosis Activity of New Oriental Medicine Preparation (Kyungokgo Mixed with Water Extract of Hovenia dulcis ) on the Ovariectomized Mice vol.2015, pp.None, 2015, https://doi.org/10.1155/2015/373145
  6. Comparative transcriptome analysis of the protective effects of Korean Red Ginseng against the influence of bisphenol A in the liver and uterus of ovariectomized mice vol.44, pp.3, 2020, https://doi.org/10.1016/j.jgr.2020.01.008
  7. Ginsenoside Rg3 Attenuates Aluminum-Induced Osteoporosis Through Regulation of Oxidative Stress and Bone Metabolism in Rats vol.198, pp.2, 2020, https://doi.org/10.1007/s12011-020-02089-9
  8. Tradition to Pathogenesis: A Novel Hypothesis for Elucidating the Pathogenesis of Diseases Based on the Traditional Use of Medicinal Plants vol.12, pp.None, 2013, https://doi.org/10.3389/fphar.2021.705077
  9. Inhibition of Alveolar Bone Destruction by Red Ginseng Extract in an Experimental Animal Periodontitis Model vol.50, pp.7, 2021, https://doi.org/10.3746/jkfn.2021.50.7.672