DOI QR코드

DOI QR Code

Massive Terrain Rendering Method Using RGBA Channel Indexing of Wavelet Coefficients

웨이블릿 압축 계수의 RGBA채널 인덱싱을 이용한 대용량 지형 렌더링 기법

  • Kim, Tae-Gwon (Dept. of Computer Science and Information Engineering, Inha University) ;
  • Lee, Eun-Seok (Dept. of Computer Science and Information Engineering, Inha University) ;
  • Shin, Byeong-Seok (Dept. of Computer Science and Information Engineering, Inha University)
  • 김태권 (인하대학교 컴퓨터정보공학과) ;
  • 이은석 (인하대학교 컴퓨터정보공학과) ;
  • 신병석 (인하대학교 컴퓨터정보공학과)
  • Received : 2013.09.18
  • Accepted : 2013.10.11
  • Published : 2013.10.20

Abstract

Since large terrain data can not be loaded on the GPU or CPU memory at once, out-of-core methods which read necessary part from the secondary storage such as a hard disk are commonly used. However, long delay may occur due to limited bandwidth while loading the data from the hard disk to memory. We propose efficient rendering method of large terrain data, which compresses the data with wavelet technique and save its coefficients in RGBA channel of an image us, then decompresses that in rendering stage. Entire process is performed in GPU using Direct Compute. By reducing the amount of data transfer, performing wavelet computations in parallel and doing decompression quickly on the GPU, our method can reduce rendering time effectively.

대용량 지형 데이터는 전체를 CPU나 GPU메모리에 적재할 수 없기 때문에 하드디스크와 같은 보조기억장치에서 필요한 부분을 읽어와 렌더링하는 out-of-core기반의 방법이 사용된다. 하지만 out-of-core 기반의 방법은 하드디스크로부터 GPU메모리까지 데이터를 읽어올 때 대역폭한계로 인해 데이터의 전송시간이 길어진다. 이 논문에서는 Direct Compute를 이용하여 대용량 지형 데이터를 GPU에서 웨이블릿 기법으로 압축한 후 계수들을 이미지의 RGBA채널에 대응시켜 저장하고 렌더링 단계에서 이를 압축 해제하여 사용하는 방법을 제안한다. 이 방법은 GPU를 이용하여 압축된 지형 데이터를 빠르게 압축 해제해 사용함으로써 데이터의 전송량을 줄이고 웨이블릿 계산을 병렬적으로 수행하므로 전체 렌더링 시간을 단축할 수 있다.

Keywords

References

  1. P. Lindstrom, V. Pascucci, "Terrain simplifica tion simplified: A general framework for vie w-dependent out-of-core visualization.", IEEE Transactions on Visualization and Computer Graphics, Vol. 8, pp. 239-254, 2002. https://doi.org/10.1109/TVCG.2002.1021577
  2. F. Losasso, H. Hoppe, "Geometry clipmaps: t errain rendering using nested regular grids." ACM Transactions on Graphics (TOG), Vol. 23, pp. 769-776, 2004. https://doi.org/10.1145/1015706.1015799
  3. C. Tanner, C. Migdal, M. Jones. "The clipma p: a virtual mipmap." Proceedings of the 25th annual conference on Computer graphics and interactive techniques, pp. 151-158, 1998.
  4. A. Graps, "An introduction to wavelets." Computational Science & Engineering, Vol. 2, p p. 50-61, 1995. https://doi.org/10.1109/99.388960
  5. Microsoft Corp, "Tessellation Overview", http://msdn.microsoft.com/en-us/library/windows/desktop/ff476340(v=vs.85).aspx
  6. M. Hope, T. Ertl, "Hardware accelerated wav elet transformations.", Data Visualization 2000, pp. 93-103, 2000.
  7. T. Wong, C. Leung, P. Heng, J. Wang, "Disc rete wavelet transform on consumer-level gr aphics hardware." IEEE Transactions on Mul timedia, Vol. 9, No. 3, pp. 668-673, 2007. https://doi.org/10.1109/TMM.2006.887994
  8. M. Adams, F. Kossentini, "JasPer: A softwar e-based JPEG-2000 codec implementation.", Proceedings of 2000 International Conference on Image Processing, Vol.2, pp. 53-56, 2000.
  9. W.J. van der Laan, A.C. Jalba, Jos B.T.M. R oerdink, "Accelerating wavelet lifting on grap hics hardware using CUDA.", IEEE Transact ions on Parallel and Distributed Systems, Vol. 22, No. 1, pp. 132-146, 2011. https://doi.org/10.1109/TPDS.2010.143
  10. M. Treib, F. Reichl, S. Auer, R. Westermann, "Interactive editing of gigasample terrain fields.", Computer Graphics Forum, Vol. 31, pp. 383-392, 2012. https://doi.org/10.1111/j.1467-8659.2012.03017.x
  11. P. Lindstrom, D. Koller, W. Ribarsky, L. Hodges, N. Faust, G. Turner, "Real-time, continuous level of detail rendering of height fields", Proceedings of ACM SIGGRAPH 96, pp. 109 -118, 1996.
  12. S. Rötter, W. Heidrich, P. Slusallek, H. Seide l, "Real-time generation of continuous levels of detail for height fields." Proceedings of 6th International Conference in Central Europeon Computer Graphics and Visualization, p. 315- 322, 1998.
  13. M. Duchaineau, M. Wolinsky, D. Sigeti, M. Miller, C. Aldrich, M. Mineev-Weinstein, "RO AMing terrain: real-time optimally adapting meshes", Proceedings of IEEE Visualization 97, pp. 81-88, 1997.
  14. W. Sweldens, "The lifting scheme: A constru ction of second generation wavelets.", SIAM Journal on Mathematical Analysis, Vol. 29, p p.511-546, 1998. https://doi.org/10.1137/S0036141095289051
  15. A. Cohen I. Daubechies, J. Feauveau, "Biort hogonal bases of compactly supported wavelets.", Communications on pure and applied mathematics, Vol. 45, pp485-560, 1992. https://doi.org/10.1002/cpa.3160450502
  16. Microsoft Corp, "Compute Shader Overview", http://msdn.microsoft.com/en-us/library/windo ws/desktop/ff476331(v=vs.85).aspx
  17. Microsoft Corp, "ID3D11DeviceContext:: Dispatch method", http://msdn.microsoft.com/en-us/library/windows/desktop/ff476405(v=vs.85).aspx

Cited by

  1. An Efficient Real-time Rendering Method for Compressed Terrain Dataset with Wavelet Transform vol.14, pp.4, 2014, https://doi.org/10.7583/JKGS.2014.14.4.45