DOI QR코드

DOI QR Code

Thermal-Structure Interaction Parallel Fire Analysis for Steel-Concrete Composite Structures under Bridge Exposed to Fire Loading

화재에 노출된 교량하부 강합성 구조물에 대한 열-구조 연성 병렬화재해석

  • Yun, Sung-Hwan (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Gil, Heungbae (Expressway & Transportation Research Institute, Korea Expressway Corporation) ;
  • Lee, Ilkeun (Expressway & Transportation Research Institute, Korea Expressway Corporation) ;
  • Kim, Wooseok (Department of Civil Engineering, Chungnam National University) ;
  • Park, Taehyo (Department of Civil and Environmental Engineering, Hanyang University)
  • 윤성환 (한양대학교 건설환경공학과) ;
  • 길흥배 (한국도로공사 도로교통연구원) ;
  • 이일근 (한국도로공사 도로교통연구원) ;
  • 김우석 (충남대학교 토목공학과) ;
  • 박대효 (한양대학교 건설환경공학과)
  • Received : 2013.07.10
  • Accepted : 2013.08.01
  • Published : 2013.08.30

Abstract

The objective of this research is to evaluate of global and local damage for steel-concrete composite structures under highway bridge exposed to fire loading. To enhance the accuracy and efficiency of the numerical analysis, the proposed transient nonlinear thermal structure interaction(TSI) parallel fire analysis method is implemented in ANSYS. To validate the TSI parallel fire analysis method, a comparison is made with the standard fire test results. The proposed TSI parallel fire analysis method is applied to fire damage analysis and performance evaluation for Buchen highway bridge. The result of analysis, temperature of low flange and web are exceed the critical temperature. The deflection and deformation state show good agreement with the fire accident of buchen highway bridge.

본 논문은 교량 하부에서 발생된 화재에 대한 강-콘크리트 합성구조의 전반적 국부적 손상평가를 위한 수치해석적 연구이다. 수치해석의 정확성 및 효율성을 높이기 위해 구성재료의 과도 비선형 열적 열역학적 특성이 고려된 열-구조 연성병렬 화재해석 기법이 제안되고, ANSYS solver와 연결되어 해석이 수행되며, 표준화재시험과 비교 검증된다. 검증된 해석기법을 통해 국내에서 발생된 부천고가교 합성구조에 대한 화재손상해석이 수행된다. 해석결과 강박스 거더의 하부 플랜지 및 복부의 경우 임계온도를 초과하였고 구조적 처짐과 변형 형상이 화재사고 결과와 비교적 잘 일치하였다.

Keywords

References

  1. ANSYS (2007) ANSYS Release 11.0 Documentation, ANSYS Inc., USA.
  2. ASTM E119-82 (2000) Standard Methods of Fire Tests of Building Construction and Materials, American Society for Testing and Materials.
  3. Choi, J.H. (2008) Concurrent Fire Dynamics Models And Thermomechanical Analysis Of Steel And Concrete Structures, Ph.D. thesis, Georgia Institute of Technology.
  4. Compendium of UK (1989) Standard Fire Test Data for Unprotected Steel-2, Published by British Steel Technical and Swinden Laboratories.
  5. EUROCODE 2 (2004) Design of Concrete Structures, Part 1, 2: General rules, Structural fire design, European Committee for Standardization.
  6. EUROCODE 4 (2005) Design of Composite Steel and Concrete Structures, Part 1, 2: General rules, Structural fire design, European Committee for Standardization.
  7. ISO 834-1 (1999) Fire Resistance Tests-Elements of Building Construction and Materials.
  8. Kodur, V., Gu, L., Garlock, M.E.M. (2010) Review and Assessment of Fire Hazard in Bridges, Journal of the Transportation Research Board, 2172(1), pp.2-29.
  9. Korea Expressway Corporation (2011) Design and Construction for the Fire Restoration of Bucheon Highway Bridge, Korea Expressway Corporation.
  10. Park, J.W., Yun, S.H., Park, T. (2011) Analysis of Reinforced Concrete Panel subjected to Blast Load using Parallel and Domain Decomposition, Journal of the Computational Structural Engineering, 24(4), pp.365-373.
  11. Paul A. Croce, Krishna S. Mudan (1986) Calculating impacts for large open hydrocarbon fires, Fire Safety Journal, 11(1-2), pp.99-112. https://doi.org/10.1016/0379-7112(86)90055-X