DOI QR코드

DOI QR Code

Development of Abutment-H pile Connection for Large Lateral Displacements of Integral Abutment Bridges

일체식 교대 교량의 대횡변위를 위한 교대와 H형 말뚝 연결부의 개발

  • Kim, Woo Seok (Department of Civil Engineering, Chungnam National University) ;
  • Lee, Jaeha (Department of Civil Engineering, Korean Maritime University) ;
  • Park, Taehyo (Department of Civil and Environmental Engineering, Hanyang University)
  • Received : 2013.07.22
  • Accepted : 2013.08.02
  • Published : 2013.08.30

Abstract

Abutment-to-pile connection in an integral abutment bridge is vulnerable to lateral displacement induced by thermal movement of the superstructure. However, previous researches have merely focused on the connection. In order to improve the performance of the connection, new abutment-to-pile connection designs were proposed based on quasi-static nonlinear finite element model. The reinforcement detail specified in PennDOT DM4 and HSS tube were barely effective in controlling crack growing but spiral rebar effectively performed to delay crack growth as well as absorbing energy capacity. However, it was found that delaying cracking and strengthening the connection also caused the high lateral load in superstructures. Consequently, shape of HP pile were modified to introduce plastic hinge of the HP pile for reducing the lateral load in superstructures. Connections with modified HP pile significantly prevented crack propagations under the lateral displacement.

본 논문에서는 일체식 교대 교량의 장대화 및 내진성능 향상을 위해 가장 중요한 역할을 하는 교대-H형 강말뚝 연결부의 성능을 향상시키기 위하여 기존의 연결부의 균열형상을 파악하고, 이를 기반으로 새로운 형태의 연결부를 제안하기 위하여 철근을 활용하여 강성을 증가시키는 방법과 강말뚝의 형상을 개선하여 연성을 개선시키는 방법을 모색하였다. 먼저, 기존 연결부의 성능을 향상시키기 위하여 연결부 주변에 PennDOT에 규정된 철근상세와 나선철근의 배치와 HSS 튜브를 사용하였으나, PennDOT의 철근 상세와 HSS 튜브는 연결부의 성능을 향상시키지 못 했으나, 나선철근은 균열을 효과적으로 차단시키는 것을 확인할 수 있었다. 하지만, 철근의 구속효과로 인해 강말뚝의 저항력이 변위에 선형적으로 비례하여 증가하므로 교량의 상부구조에 축력을 발생시키는 효과를 가져왔다. 따라서, 강말뚝의 형상을 개선하기 위하여 콘크리트 교대에 매입된 부분의 플랜지를 제거하는 방법과 콘크리트 외부에서 플랜지의 폭을 축소시키는 형태를 검토하였다. 두 가지 방안 모두 균열을 억제하는데 효과적인 방법이었으나, 플랜지를 제거하는 쪽의 연결부가 더욱 효과적이었다.

Keywords

References

  1. hn, J., Yoon, J., Kim, S., Kim, J. (2010) Evaluation on Behavioral Characteristics of PSC Integral Abutment Bridge, KSCE Jounral, 30(4A), pp.361-373
  2. Arockiasamy, M., Butrieng, N., Sivakumar, M. (2004) State-of-the-Art of Integral Abutment Bridges: Design and Practice, Journal of Bridge Engineering, ASCE, 9(5), pp.497-506. https://doi.org/10.1061/(ASCE)1084-0702(2004)9:5(497)
  3. Baptiste, K., Kim, W., Laman, J.A. (2011) Parametric Study and Length Limitations for Prestressed Concrete Girder Integral Abutment Bridges, Structural Engineering International, IABSE, 21(2), pp.151-156. https://doi.org/10.2749/101686611X12994961034219
  4. Bazant, Z.P., Planas, J. (1998). Fracture and Size Effect in Concrete and other Quasibrittle Materials. Boca Raton, CRC Press.
  5. CEB-FIP (2010), CEB-FIP model code 2010, Bull. Inf. Com. Euro-Int. Beton 203.
  6. Coronado, C. (2006) Characterization, Modeling and Size Effect of Concrete-Epoxy interfaces, PhD thesis, Civil and Environmental Engineering Dept., The Pennsylvania State University.
  7. Frosch, R.J., Kreger, M.E., Talbott, A.M. (2009) Earthquake Resistance of Integral Abutment Bridges, FHWA/IN/JTRP-2008/11, Final Report, doi:10.5703/1288284313448.
  8. Kim, S., Yoon, J., Ahn, J., Lee, S. (2009) Experimental Study on Behaviors of Pile-Abutment Joint in Integral Abutment Bridge, KSCE Jounral, 29(6A), pp.651-659
  9. Kim, W., Laman, J.A. (2012) Seven-year Field Monitoring of Four Integral Abutment Bridges, Journal of Performance of Constructred Facilities, 26(1), pp.54-64. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000250
  10. Kim, W., Lee, J., Jeoung, C. (2013) Concrete Crack Control of Pile-to-pilecap Connection in Integral Abutment Bridges under Cyclic Bridge Movement, Advanced Materials Research, 753-755, pp.462-466. https://doi.org/10.4028/www.scientific.net/AMR.753-755.462
  11. Korea Express Corporation Research Institute (2009) Design Guidelines for Integral Abutment Bridges (Jointless bridge), Korea Express Corporation.
  12. Kunin, J., Alampalli, S. (2000) Integral Abutment Bridges: Current Practice in United States and Canada, Journal of Performance of Constructed Facilities, ASCE, 14(3), pp.104-111. https://doi.org/10.1061/(ASCE)0887-3828(2000)14:3(104)
  13. Lee, J., Fenves, L.G. (1998) Plastic-damage Concrete Model for Earthquake Analaysis of Dams, Earthquake Engineering and Structural Dynamics, 27(9), pp.937-956. https://doi.org/10.1002/(SICI)1096-9845(199809)27:9<937::AID-EQE764>3.0.CO;2-5
  14. Lu, X.Z., Teng, J.G., Ye, L.P., Jiang, J.J. (2003) Bond-slip models for FRP sheets/plates bonded to concrete, Engineering Structures, 27(6), pp.920-937.
  15. Park, Y., Jung, H., Lee, Y., Jung, G. (2001) Lateral Behavior of Impact-Driven H Piles Used in Integral Abutment Bridge, KSCE Jounral, 21(3C), pp.207-223
  16. PennDOT. (2007) Design Manual Part 4, Commnwealth of Pennsylvania, Department of Transportation, Harrisburg, PA.