DOI QR코드

DOI QR Code

Numerical Calculation for Impedance of Horizontal Ground Electrode for Information and Communication Facilities with Considering Characteristics of Permittivity in Soil

토양의 유전율 특성을 고려한 정보통신설비용 수평접지전극의 임피던스 계산

  • Ahn, Chang-Hwan (Department of Digital Electronics, Inha Technical College)
  • 안창환 (인하공업전문대학 디지털전자과)
  • Received : 2013.08.26
  • Published : 2013.10.25

Abstract

An impedance of ground electrode for information and communication facilities has a significant relationship with the electrical characteristics of soil where the ground electrode is buried. Especially, the impedance of ground electrode is directly affected by the characteristics of permittivity and conductivity in soil as a function of a frequency of an applied electric field. The program based on the electromagnetic field model was developed in MATLAB. Because both permittivity and conductivity can not be modified in commercial programs. The permittivity of soil was applied with the Debye equation which is a model of dielectric relaxation. And the empirical equation of the conductivity in soil was quoted in other paper. In order to confirm the reliability of proposed program, the impedance measurement of ground electrode was carried out, which were compared with the results of simulation in commercial program. In result, it was confirmed that the impedance and phase different simulated by appling the characteristics of permittivity and conductivity in soil are in good agreement with the measured values than results of NEC.

정보통신설비용 접지전극의 임피던스는 접지전극이 매설되어 있는 토양의 전기적 특성과 밀접한 관계가 있다. 특히 인가된 전계의 주파수에 따른 토양의 유전율과 도전율 특성이 접지전극의 임피던스에 직접적으로 영향을 준다. 접지전극의 임피던스를 계산할 수 있는 상용프로그램은 유전율과 도전율을 수정하여 시뮬레이션하는 것이 불가능하기 때문에 전자계 이론을 적용한 프로그램을 MATLAB으로 구현하였다. 토양의 유전율은 유전완화 모델인 디바이(Debye)식을 적용하였으며, 도전율은 실험에서 얻어진 수식을 다른 논문에서 인용하였다. 시뮬레이션 결과의 신뢰성을 확인하기 위해서 실험계를 구성하여 접지전극의 임피던스를 측정하고, 시뮬레이션 결과와 서로 비교하였다. 그 결과, 토양의 유전율과 도전율 특성을 고려한 본 논문 결과가 고려하지 않은 상용프로그램(NEC) 결과 보다 측정값과 더욱 잘 일치하는 것을 확인하였다.

Keywords

References

  1. ANSI/IEEE Std 81-1983, "IEEE Guide for measuring earth resistivity, ground impedance, and earth surface potentials of a ground system", pp.16-28, 1983.
  2. ZC. Alex, J. Behari, "Complex dielectric permittivity of soil as function of frequency, moisture and texture", Indian J Pure & Applied Physics 34:319-323, 1996.
  3. S. Visacro, R. Alipio, "Frequency dependence of soil parameters: Experimental Results, predicting formula and influence on the lightning response of grounding electrodes", IEEE Trans. Power Del., vol. 27, No. 2, pp.927-935. 2012. https://doi.org/10.1109/TPWRD.2011.2179070
  4. Y. Liu, M. Zitnik, R. Thottappillil, "An improved transmission line model of grounding system", IEEE Trans. EMC, Vol.43, No.3, pp.348-355, 2001.
  5. L. Grcev, F. Dawalibi, "An electromagnetic model for transients in grounding systems", IEEE Trans. Power Delivery, Vol.5, No.4, pp.1773-1781, 1990. https://doi.org/10.1109/61.103673
  6. IEC 62305-1, "Protection against lightning - Part 1: General principles", IEC TC 81, 2010.
  7. P. Debye, "Scattering by an inhomogeneous solid", Journal of Applied Physics, Vol. 20, Issue:6, pp.518-525, 1949. https://doi.org/10.1063/1.1698419
  8. W. C. Gibson, "The method of moments in electromagnetics", Chapman & Hall/CRC, pp.33-79, 2008.
  9. D. Poljak, V. Roje, "The integral equation method for ground wire input impedance", Integral methods in science and engineering, Vol. I, U.K., pp.139-143, 1997.
  10. IEEE Std 81.2-1991, "IEEE Guide for measurement of impedance and safety characteristics of large, extended or interconnected grounding systems", pp. 10- 16, 1991.