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2H Design of Decoupled Control Systems Based  
on Directional Interpolations 

 
 

Kiheon Park† and Jin-Geol Kim* 
 

Abstract – 2H  design of decoupled control systems is treated in the generalized plant model. The 
existence condition of a decoupling controller is stated and a parameterized form of all achievable 
decoupled closed loop transfer matrices is presented by using the directional interpolation approaches 
under the assumption of simple transmission zeros. The class of all decoupling controllers that yield 
finite cost function is obtained as a parameterized form and an illustrative example to find the optimal 
controller is provided. 
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1. Introduction 
 

 
One important characteristic of the multivariable 

systems is coupling interactions between input and output 
variables. Efforts to eliminate these interactions lead to 
finding controllers that make the transfer matrix from the 
inputs to the outputs diagonal. Once a closed loop system 
is decoupled, engineers can exploit the well-established 
design methods of single-input-single-output control 
system for each channel. The existence condition of a 
decoupling controller is now well known. For two-degree-
of-freedom (2DOF) configuration, Doseor and Gündes [1] 
and Lee and Bongiorno [2, 3] show that a decoupling 
controller always exists if the plant is internally stabilizable. 
On the other hand, a decoupling controller of the 1DOF 
control system does not always exist. For 1DOF 
configuration, necessary and sufficient conditions for the 
existence of decoupling controllers are presented by [4, 5, 
6]. While the existence condition of the decoupling 
controllers has been sufficiently studied, not many papers 
treat performance issues of decoupled systems. The robust 
stability problem of decoupling controllers is first 
addressed by Safonov and Chen [7]. They obtain the 
stabilizing controllers maximizing stability margin in the 

∞H  norm context under decoupling and output regulation 
constraints. Brinsmead and Goodwin [8] investigate the 
inherent limits of a decoupled system via 2H  cost of 
tracking error. Optimal 2H  design considering both of the 
tracking error and the plant saturation in decoupling 
problems is treated by Lee and Bongiorno [2, 3] for 2DOF 
and 3DOF systems and by Youla and Bongiorno [5] and 
Bongiorno and Youla [9] for 1DOF configuration with 

non-unity feedback. 
Decoupling design in the generalized plant model is very 

compact and effective in that the derived formulas are 
applied to the most various models including 1DOF, 2DOF, 
and 3DOF configurations with non-unity feedback cases. 
The existence condition of a decoupling controller for the 
generalized plant is treated by [10, 11]. As for 2H  
decoupling design, Park [12] extends the work of Youla 
and Bongiorno [5] to the generalized plant model. 
However, the freedom of controller configuration in [12] is 
limited to one and hence the potential of the generalized 
plant model for including all possible feedback 
configurations is not fully appreciated. In [13], optimal 

2H  block decoupling problem is treated with the general 
setting of 2DOF controller configuration. The class of all 
decoupling controllers is parameterized by a free parameter 
and this parameter is used to obtain the optimal controller 
which minimizes the 2H  norm of the transfer matrix from 
the reference input to the error. In formulating the cost 
functional, however, the control variable is not considered. 

In this paper, 2H  design of decoupled system for the 
generalized plant model is treated based on directional 
interpolation approaches [14]. The assumption of one-
degree-of-freedom configuration in [12] is eliminated and 
the only assumption needed on the plant is the condition of 
simple transmission zeros. The approach using the vector 
operation in [10, 11] is not taken here and hence dimension 
inflation problem is also avoided to describe the existence 
condition of a decoupling controller. In this paper, the class 
of all decoupled transfer matrices is parameterized and the 
optimal 2H  controller is obtained together with the ones 
that yield finite 2H  cost. It is shown that the optimal 
controller is strictly proper under the reasonable order 
assumptions on the generalized plant. 

 
Notations; Throughout the paper, we consider only real 

rational matrices whose elements are from the set of all 
real rational functions, which are not necessarily proper. 
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Since this set is the quotient field associated with the ring 
of real polynomials, we will adopt fractional represent-
tations of a real rational matrix using real polynomial 
matrices. For any real rational matrix ( )G s , the notation 

( )∗G s  stands for '( )−G s ( '( )G s  denotes the transpose of 
( )G s ). In the partial fraction expression of ( )G s , the 

contribution made by all its finite poles in Re 0≤s  and 
Re 0>s  are denoted by { }+G  and { }−G , respectively. 
The notation ( ) 0( )≤G s sν  means that no entry in ( )G s  
grows faster than sν  as →∞s . A rational matrix ( )G s  
is said to be stable if it is analytic in Re 0≥s . The 
Kronecker product of two matrices is denoted as ⊗G R . 
The Schur product G R  of two equi-size matrices 

[ ]= ijG g  and [ ]= ijR r  is the matrix whose i-row, j-
column entry is ij ijg r . The Khatri-Rao product of two 
matrices is denoted as G R  and is the matrix whose i -
column is given by ⊗i ig r  where ig  and ir  the i -
column of G  and i -column of R , respectively [15]. The 
notation vecG  implies the vector formed by stacking all 
the columns of the matrix G . For a diagonal matrix, 
vecd G  denotes the vector formed by stacking all the 
diagonal elements of the matrix G . ( )baT s  represents the 
transfer matrix from a  to b . The notations C , +C  and 

+C  denotes the complex number plane, the open right half 
plane of C  and the closure of +C , respectively. The 
notation ∗ξ  denotes the conjugate transpose of a vector ξ .  

 
 

2. Decoupling Problem and its Solution  
 
The model under consideration is shown in Fig. 1. The 

vectors ( )r s  and ( )w s  are the exogenous inputs. The 
vector ( )v s  is the output variable in regard of decoupling 
design. The vector ( )z s  is the regulated variable. The 
vectors ( )u s  and ( )y s  are the control input and the 
measured variable, respectively. The variables ( )r s  and 

( )v s  are the ones such that the transfer matrix ( )vrT s  is 
to be decoupled. In most cases, ( )r s  is the reference 
input and ( )v s  is the plant output.  

The transfer matrix of the generalized plant is given by  
 

 
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

v r
z P w
y u

,
00 01 02

10 11 12

20 21 22

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

P P P
P P P P

P P P
 (1) 

The variables v  and r  have the same dimension 
1×n . The variables w  and u  have the dimensions 

1 1×q  and 2 1×q , respectively. The variables z  and y  
have the dimensions 1 1×l  and 2 1×l , respectively. In this 
paper, we consider the multi-objective design of 
decoupling and 2H  cost minimization. The following 
assumption is necessary and sufficient for the existence of 
a stabilizing controller [16]. In the below, the notation PΨ  
denotes the characteristic denominator [17] of the rational 
matrix ( )P s  and +

PΨ  is the polynomial which absorbs 
all the zeros of PΨ  in +C . 

 
Assumption 1: The general plant block ( )P s  is free of 

hidden modes in +C  and 
22

+ +=P PΨ Ψ . 
Let  
 

 1 1
22 1 1( ) ( ) ( ) ( )− −= =P A s B s B s A s  (2) 

 
denote polynomial coprime fractional expressions. There 
always exist polynomial matrices 1( ), ( ), ( )X s Y s X s  and 

1( )Y s  such that  
 

 11 1

1

−⎡ ⎤⎡ ⎤
=⎢ ⎥⎢ ⎥−⎣ ⎦ ⎣ ⎦

A YX Y
B XB A

1 1 1

1

1 0
0 1

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦

A Y X Y
B X B A

 (3) 

 
with 1det ( ) det ( ) 0⋅ ≡/X s X s . It is well known [18] that the 
condition 

22

+ +=P PΨ Ψ  in Assumption 1 is equivalent to the 
one that the three matrices 

 

 [ ]00 01 02
1 1 20 21

10 11 12

⎡ ⎤ ⎡ ⎤
−⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

P P P
AY P P

P P P
 , 02

1
12

⎡ ⎤
⎢ ⎥
⎣ ⎦

P
A

P
 

and [ ]20 21A P P   (4) 
 

are stable. As explained, the transfer matrix ( )vrT s  is the 
one to be decoupled (i.e., to be diagonalized) and it is 
given by 

 
 1

00 02 22 20( ) ( )−= + −vrT s P P I CP CP  . (5) 
 
In the generalized plant model in Fig. 1, decoupling 

design is to find stabilizing controllers ( )C s  that make 
the transfer matrix ( )vrT s  diagonal and invertible. The 
approach taken here for solving the decoupling problem is 
to characterize the diagonal matrices ( )vrT s  that admit 
stabilizing controllers ( )C s  in (5) and hence we define 
the realizability of a diagonal matrix ( )T s  as follows: 

 
Definition 1: A diagonal stable rational matrix ( )T s  is 

said to be realizable for the given plant ( )P s  if there 
exists a stabilizing controller ( )C s  that realizes the 
transfer matrix ( )vrT s  of the system as the matrix ( )T s . 

 
In decoupling design, we ask ( )vrT s  to be diagonal and 

invertible so that the normal rank of ( )vrT s  should be n . 

)(sr

)(su

)(sv

)(sy
)(sP

)(sC

)(sw )(sz

 
Fig. 1. The generalized plant model. 
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In almost all cases, the matrix 00P  is a null matrix and in 
this case 1

02 22 20( ) ( )−= −vrT s P I CP CP . In view of this, it 
can be concluded that we need assumptions on the rank of 
the matrices 02P  and 20P . In this paper, we assume the 
following. 

 
Assumption 2: 2 2= =n q l  and 02P  and 20P  are 

invertible. 
 
Now we seek to find the realizability condition for 

diagonal matrices ( )T s . Consider the class of all 
stabilizing controllers characterized by the formula  

 
 1

1 1( ) ( ) ( )−= − − +C s X KB Y KA  (6) 
 1

1 1( )( )−= − + −Y A K X B K , (7) 
 
where ( )K s  arbitrary real rational stable matrices such 
that 1det( ) 0− ≡/X KB and 1det( ) 0− ≡/X B K . In this case 
we have 

 
 00 02 20vrT T T KT= − , (8) 

 
where  

 
 00 00 02 1 1 20= −T P P AY P , (9) 
 02 02 1=T P A  and 20 20=T AP . (10) 

 
Notice that 00 02,T T  and 20T , and hence ( )vrT s , are 

stable by the properties in (4). Since ( )C s in (6) 
characterizes the class of all stabilizing controllers, the 
formula for ( )vrT s in (8) describes the structure of 
realizable ( )T s and this is the basis to start for 
characterizing realizable ( )T s . Before we proceeding 
further, we assume the following. 

 
Assumption 3: The matrices 02T  and 20T  have the 

distinct simple transmission zeros 1, 1+∈ = →iz C i m , and 
ˆ +∈iz C , 21= →i m , respectively , and ˆ ,≠i jz z for any 
i  and j . 
 
Since 02T  and 20T  are invertible and iz  and ˆiz  are 

zeros of 02T  and 20T , respectively, we can find nonzero 
vectors iξ  and iμ  [19] such that 

 
 *

02 ( ) 0=i iT zξ  and 20 ˆ( ) 0=i iT z μ . (11) 
 
Hence, for a diagonal stable matrix ( )T s  to be 

realizable, it is necessary from (8) and (11) that 
 

 ( )∗ ∗=i i iT zξ ε  where 00 1( ), 1∗ ∗= = →i i iT z i mε ξ , (12.a) 
 ˆ( ) =i i iT z μ δ  where 00 2ˆ( ) , 1= = →i i iT z i mδ μ . (12.b) 

 
Since a realizable ( )T s  is a diagonal matrix, say 
( ) { ( )},= kT s diag t s  1= →k n , the above directional 

interpolation conditions reduce to the interpolation 
constraints to the scalar function ( ) , 1= →kt s k n . Let’s 
denote the −k th  element of a (row or column) vector 

ix  as ikx . The conditions in (12) are changed to 
 

 1( ) , 1= = →ik k i ikt z i mξ ε , (13.a) 
 2ˆ( ) , 1= = →ik k i ikt z i mμ δ , (13.b) 

 
for 1= →k n . Obviously, a rational function ( )kt s  to 
satisfy the interpolation conditions in (13) does not exist if  

 
 0=ikξ  and 0≠ikε , or, 0=ikμ  and 0≠ikδ  (14) 

 
for some .i  Since the interpolation condition for ( )kt s  
in (13) is a necessary condition for the existence of a 
decoupling controller, if the interpolation problem in (13) 
does not have a solution ( )kt s  for some k , a decoupling 
controller does not exist. On the other hand, if the data sets 
{ , }ik ikξ ε  and { , }jk jkμ δ  are free from the non-existence 
condition in (14), a solution ( )kt s  exists. That is, a 
decoupling controller exists in the following cases: 

 
 0≠ikξ  and 0≠jkμ  for any i  and j ,  (15.a) 

 
or,  

 
 if 0=ikξ  for some i , then 0=ikε , and, (15.b) 
 if 0=jkμ  for some j , then 0=jkδ , (15.c) 

 
for 1≤ ≤k n . This existence condition is conveniently 
described by the following rank description. That is, a 
decoupling controller exists if and only if 

 
 [ ]=ik ik ikrank rankξ ξ ε  and [ ]=jk jk jkrank rankμ μ δ   
  (15.d) 

 
for any ,i j  and k . From now on we will assume that 
the data sets satisfy the conditions in (15.d). 

In the next, we seek to characterize all rational ( )kt s  
satisfying the interpolation conditions in (13). When both 

ikξ  and ikε  are zeros as in (15.b), this imposes no 
interpolation constraint at iz  in (13.a) on ( )kt s  and the 
same is true for jkμ  and jkδ  in (15.c). So let’s define the 
polynomials ( )kld s  and ( )krd s  as follows; 

 

 
1

1

1 0
( ) ( ) ,

0 0=

≠⎧
= − = ⎨ =⎩
∏ i

m
ik

kl i i
i ik

if
d s s z

if
α ξ

α
ξ

 (16.a) 

 
2

1

1 0
ˆ( ) ( ) ,

0 0=

≠⎧⎪= − = ⎨ =⎪⎩
∏ j

m
jk

kr j j
jkj

if
d s s z

if
β μ

β
μ  (16.b) 

 
We can now describe all solutions of ( ), 1 ,= →kt s k n  

satisfying the interpolation conditions of  
 

 ( ) / , 0= ≠k i ik ik ikt z for i such thatε ξ ξ , (17.a) 
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and 
 

 ˆ( ) / , 0= ≠k j jk jk jkt z for j such thatδ μ μ , (17.b) 
 

as 
 

 0( ) ( ) ( ) ( ) ( )= +k k kl ka krt s t s d s t s d s ,  (18) 
 

where 0 ( )kt s is any stable rational function satisfying the 
interpolation conditions in (17) (when there are no 
interpolation conditions in (17), we set 0 ( ) 0=kt s ) and 

( )kat s any arbitrary stable rational function. Since we 
don’t exclude improper ( )vrT s  from our consideration, 

0 ( )kt s  can be chosen as a polynomial and an easy choice 
in this case is the one obtained from Lagrange interpolation 
formula [20]. Hence we can express ( )T s  as  

 
 0( ) ( ) ( ) ( ) ( )= + l rT s s s s sΔ Δ Δ Δ   (19) 
 
where  

 
 0 10 20 0( ) { ( ), ( ), , ( )}= ns diag t s t s t sΔ , (20) 

 1 2( ) { ( ), ( ), , ( )},=l l l nls diag d s d s d sΔ  (21)  

 1 2( ) { ( ), ( ), , ( )},=r r r nrs diag d s d s d sΔ  (22) 
 

and ( )sΔ  is an arbitrary ×n n  diagonal stable rational 
matrix. In (19), when 02 ( )T s ( 20 ( )T s ) does not have a 
zero in +C  , =l IΔ ( =r IΔ ).  

The matrix ( )T s  formulated by the parameterized form 
in (19) is sufficient to be realizable as ( )vrT s . In fact, 
consider the matrix ( )K s  obtained from (8) with ( )vrT s  
in (19). It can be shown in the below that the matrix ( )K s  
formed by 

 
 1 1

02 00 0 20( ) ( )− −= − − l rK s T T TΔ Δ ΔΔ  (23) 

     0 ( ) ( ) ( ) ( )= − a bK s K s s K sΔ , (24) 
 

is stable where 
 

 1 1
0 02 00 0 20( )− −= −K T T TΔ , (25) 

 1
02
−=a lK T Δ  and 1

20
−=b rK TΔ .  (26) 

 
Since iz  and ˆiz  are simple zeros of 02T  and 20T , 

respectively, they are simple poles of 1
02
−T  and 1

20
−T , 

respectively. Consider their partial fractional expressions  
 

 
1

1
02 1

1
( )−

=

= +
−∑

m
i

i i

M
T F s

s z
, 

2
1

20 2
1

( )
ˆ

−

=

= +
−∑

m
j

j j

N
T F s

s z , (27) 

 
where 1F  and 2F  are stable. Using the results in Lemma 
1 (Appendix), We can easily show that aK  and bK  are 
stable since ( ) 0=i l iM zΔ (notice that ( ) 0=ik kl id zξ  for 

any i  and k ) and ˆ( ) 0=r j jz NΔ . To show that 0K  is 
stable, we insert the equalities in (27) into (25) so that  

 
1

0 00 0 2
1

( )( ) ( )
=

= −
−∑

m
i

i i

M
K T F s

s z
Δ

2

1 00 0
1

( )( )( )
ˆ=

+ −
−∑

m
j

j j

N
F s T

s z
Δ  

1 2

00 0
1 1

( )( )( )
ˆ= =

+ −
− −∑ ∑

m m
ji

i ji j

NM
T

s z s z
Δ    (28) 

1 00 0 2( )( ) ( )+ −F s T F sΔ .   
 

It now follows from (64) of Lemma 1 (Appendix) that 
00 0( ( ) ( ))−i i iM T z zΔ 00 0( ( ) ( ))∗= −i i i ik T z zξ Δ ( )∗ ∗= −i i ik ε ε  

0=  and hence the matrix 00 0( ( ) ( ))−iM T s sΔ  has the 
factor ( )− is z . Similarly, we can show that the matrix 

00 0( ( ) ( ))− jT s s NΔ  has the factor ˆ( )− js z . By these 
observations, we can also conclude that the matrix 

00 0( ( ) ( ))Δ−i jM T s s N  has the factor ˆ( )( )− −i js z s z . 
Therefore, the first, the second, and the third terms of (28) 
are stable. The fourth term is obviously stable and this 
completes the proof and now we can state the following 
theorem without further proof. 

 
Theorem 1: Under Assumptions 1~3, a decoupling 

controller for the plant (1) exists if and only if the data sets 
{ , }ik ikξ ε  and { , }jk jkμ δ  satisfy the conditions in (15.d). 
When decoupling controllers exist, the class of all 
decoupled transfer matrices ( )vrT s  is characterized by the 
formula 

 
 0( ) ( ) ( ) ( ) ( ) ( )= = +vr l rT s T s s s s sΔ Δ Δ Δ  (29) 

 
as in (19). 

From the previous developments, we see that not all 
non-minimum phase zeros of 02 ( )T s  and 20 ( )T s  appear 
as the zeros of realizable ( )vrT s . In view of (18), the non- 
minimum phase zero ˆ( )i jz z  appears as a zero at the k -
th channel of ( )vrT s , ( )kt s , only when 

 
 0≠ikξ  and 0=ikε  ( 0≠ikμ  and 0=ikδ ), (30) 

 
which is the condition that both 0 ( )kt s  and ( )kld s  
( ( ) )krd s  have the factor ˆ( ) ( ( ) )− −i js z s z .  

 
 
3. 2H  Design of Decoupled Control Systems  

 
In this section, we formulate an 2H  design problem for 

the decoupled systems and present its solution. The 2H  
design problem for the system in Fig. 1 is to find the 
decoupling controller which minimizes a given quadratic 
cost associated with the regulated variable z  when the 
system is stimulated by the exogenous input [ '( ) '( ) ]'r s w s . 
To allow the exogenous input to include shape-
deterministic components, we assume that ( ) =q t  
[ '( ) '( )]'r t w t  is the output of the square block ( )qP s  
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driven by a stochastic vector ( )oq t  so that 
  

 [ ]( ) '( ) '( ) ' ( ) ( )= = q oq s r s w s P s q s . (31) 
 
Although allowing the block ( )qP s  to possess the poles 

in +C  makes the 2H  problem more general [21], we 
assume here for simplicity that ( )qP s  is stable and 

( )oq t is a white noise vector with spectral density of unity. 
It now follows that 

 

 
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

oz q
P

y u
, 11 12

21 22

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

P P
P

P P
, (32) 

 
where  

 
 [ ]11 10 11= qP P P P  and [ ]21 20 21= qP P P P .  (33) 

 
Let’s denote the transfer matrix from oq  to z  as 
( )zoT s . With the setup in (31) and the assumption on 
( )oq t , a meaningful quadratic cost that considers the 

transient performance and the steady state performance is 
given by  

 

 
2 1 ( ( ) ( ) )

2
∞

∗− ∞
= = ∫

j

zo zo zoj
E T Tr T s T s ds

jπ
, (34) 

 
where  

 
 1

0 11 12 22 21( ) ( )−= + −zT s P P I CP CP . (35) 
 
The 2H  problem here is to find the decoupled loop 

transfer matrix ( )T s  that minimizes the cost index in (34). 
Since 02P  and 20P  are invertible, it follows from (5) that 

 
 1 1 1

22 02 00 20( ) ( )− − −− = −vrI CP C P T P P  (36) 
 

and inserting (36) with the parameterized formula for 
( )vrT s  in (29) to ( 35) yields  

 
 0 11( ) ( ) ( ) ( ) ( )= +z a bT s T s T s s T sΔ , (37) 

 
where 
 1 1

11 11 12 02 00 0 20 21( )− −= − −T P P P P P PΔ , (38) 

 1
12 02

−=a lT P P Δ  , 1
20 21
−=b rT P PΔ , (39) 

 
And ( )sΔ  an arbitrary diagonal stable rational matrix. 
Knowing that 0 ( )K s , ( )aK s  and ( )bK s  in (25) and (26) 
are stable, we can easily show that 11T , aT  and bT  are 
stable (see Lemma 2 in Appendix). Notice that the 
expression for ( )zoT s  in (37) is the standard form to 
develop the optimal 2H  solution and it can be obtained 
under the following standard assumptions [12]. 

Assumption 4: 11P  is strictly proper. 
 
Assumption 5: ( )aT jω  has full column rank for 

finite ω . 
 
Assumption 6: ( )bT jω  has full row rank for finite ω . 
 
Assumption 7: 12 ( )P s  and 21( )P s  behave as 12 ( )P s  

→ 12
kM s and 21 21( ) → lP s M s  as →∞s  with the 

condition that 12M  and 21M  have full column rank and 
full row rank, respectively, and 0+ ≥k l . The transfer 
matrices 00 ( ),P s 02 20( ), ( )P s P s  and 22 ( )P s  are proper. 

 
Let ( )sΩ  be the Wiener-Hopf spectral factor of the 

equation 
 

 ( ) ' ( )∗ ∗b b a aT T T T ( ) ( )∗= s sΩ Ω  (40) 
 

and define 
 

 1( ) ( ' ) −= b aU s T T Ω . (41) 
 
It should be noticed that ∗ =U U I  and hence U  is 

inner. Now we present the 2H  solution formula whose 
proof is omitted since it proceeds as similarly as that of 
[12].  

 
Theorem 2: Suppose that Assumptions 1~7 are satisfied 

and the plant ( )P s  admits the existence condition in 
(15.d). The class of all decoupling loop transfer matrices 
that yield finite cost is given by 

 
 1

0( ) ( { } { } )−
− += + − +l rvecd T s fΔ Δ Ω γ γ σ  (42) 

 
where 

 
 1−

∗ ∗ ∗= r lσ Ω Δ Δ
1

1 1
11 21 20 02 12{( ) ' ( )}− −

∗ ∗ ∗ ∗ lP P P P P vecd I  (43) 

 1 1
0 0

− −= −l r vecdγ Ω Δ Δ Δ γ , (44) 
 1 1

0 00( )− −
∗= a l r bU vec T P Tγ Δ Δ , (45) 

 
and ( )f s  an arbitrary strictly proper stable vector. The 
optimal loop transfer matrix is the one with 0=f  and the 
cost E  for the transfer matrix in (42) is given by 

2
= + ≥E E f E , where E  denotes the cost for the 

optimal one. The loop transfer matrix ( )T s  in (42) is 
proper. The corresponding controller ( )C s  is obtained 
form the equation  

 
 1 1 1 1 1

02 00 20 22 02 00 20( ) ( ( ) )− − − − −= − + −C P T P P I P P T P P  (46) 
 
and it is strictly proper. 

We remark that when 00P  is diagonal, 0γ  in (45) 
simplifies to 1 1

0 00( )− −= l rvecd Pγ Ω Δ Δ . In most cases, 
00 0=P  and in this case ( )T s  in (42) is strictly proper. 
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4. An Illustrative Example 
 
As a brief example to show the procedures to obtain the 

optimal transfer matrix ( )T s  in (42), we consider the case 
that the generalized plant is given by 

 

 
00 01 02

10 11 12

20 21 22

ˆ0 0
ˆ0

0 0
ˆ

⎡ ⎤
⎢ ⎥⎡ ⎤
⎢ ⎥−⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥− −⎣ ⎦

P
P P P

I P
P P P P

I
P P P

I I P

.  (47) 

 
This case corresponds to the one-degree-of-freedom 

controller system in which a measurement noise exists and 
the regulated variables are set as the tracking error and the 
plant input. Decoupling and minimization problems are as 
explained in the previous sections. Suppose that ( )qP s =  

{ ( ), }rdiag P s I and P̂ and rP are given as 
 

 

2 1
2 ( 1)( 2)ˆ

10
1

− −⎡ ⎤
⎢ ⎥+ + +⎢ ⎥=
⎢ ⎥
⎢ ⎥+⎣ ⎦

s
s s sP

s

, 

1 0
2

10
1

⎡ ⎤
⎢ ⎥+= ⎢ ⎥
⎢ ⎥
⎢ ⎥+⎣ ⎦

r
sP

s

. (48) 

 
Since 

22
1+ += =P PΨ Ψ  in (47), Assumption 1 is satisfied 

and Assumption 2 is obviously satisfied. We can find 
coprime fractions for ˆ ( )−P s  as  

 

 
2 1 2 0

,
0 1 0 1
+ −⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥+ −⎣ ⎦ ⎣ ⎦

s s
A B

s
,  (49) 

 1

2 0.25
0 1
+ −⎡ ⎤

= ⎢ ⎥+⎣ ⎦

s
A

s
 and 1

2 0.25
0 1
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦

s
B .  (50) 

 
We see that 02 1=T B  has a simple zero at 1 2=z  and 

20 =T A  has no non-minimum phase zero (Assumption 3 is 
satisfied). The output zero vector 1

∗ξ  and the value 1
∗ε  

are obtained as [ ]1 1 0.25∗ =ξ  and  
 

 [ ]1 1 00 1 1 1(2) (2) (2) 0 0∗ ∗ ∗= = =T B Yε ξ ξ . (51) 
 
The interpolation conditions for 1( )t s  and 2 ( )t s  are 

given by 1(2) 0=t  and 2 (2) 0=t . Therefore 1( ) =t s  
2 ( ) 0=t s  and the decoupled transfer matrix in (29) is 

obtained as 0( ) = + l rT s Δ Δ ΔΔ  with 0 0=Δ , =lΔ  
2( 2)−s I  and 2=r IΔ . It can be confirmed that this result 

is identical with that of [5] in which all realizable ( )T s  
is described by the formula = +T θ α θ ψΔ Δ Δ ΔΔ . In fact, 
we can easily obtain that 0=αΔ , 2( 2)θΔ = −s I , and 

2= IψΔ  by following the definitions of them in [5].  
It now follows from (39) that 
 

 
2 0 2 0

'
0 2 1 ( 1)( 2)
− +⎡ ⎤

= ⎢ ⎥− + −⎣ ⎦
a

s s
T

s s s
 (52) 

 
and 

 

 

1 0 1 0
2 .

10 0 1
1

⎡ ⎤−⎢ ⎥+= ⎢ ⎥
⎢ ⎥−⎢ ⎥+⎣ ⎦

b
sT

s

 (53) 

 
It is easy to verify that Assumptions 4~7 are satisfied 

and the Wiener-Hopf factorΩ and other values in Theorem 
2 are obtained as  

 

 
2( 2)( 3){ 2( 5), }

1
+ +

= +
+

s sdiag s
s

Ω , (54) 

 { } 1 2 '
2 1+

⎡ ⎤= ⎢ ⎥+ +⎣ ⎦

k k
s s

σ  , 0=γ  and 0 0=γ  (55) 

 

With 1
1

2(2 5)
−

=
+

k  and 2 2

1
(1 3)

−
=

+
k . The 

optimal decoupled transfer matrix in (42) is given by 
 

 1 2
2

(2 ) (2 )
{ , }

2( 2)( 5) ( 2)( 3)
− −

=
+ + + +

k s k s
T diag

s s s s
 (56) 

 
and the corresponding controller matrix ( )C s can be 
calculated from (46). 

 
 

5. Conclusion and Discussion 
 
Decoupling design of lineal multivariable control 

systems is treated for the generalized plant model within 
the 2H  framework. A necessary and sufficient condition 
for the existence of decoupling controllers is obtained 
based on interpolation approaches. It is shown that 
directional interpolation problems associated with the 
decoupling design are changed to simple interpolation 
constrains of scalar functions whose solutions can be easily 
obtained. The class of all decoupled closed loop transfer 
matrices is parameterized and the optimal transfer matrix is 
obtained using this parameterized formula. The existence 
condition of a decoupling controller for the generalized 
plant is treated also in [10, 11] by using vector operations. 
A major disadvantage of those works is that the vector 
operation causes dimension inflation and hence the method 
suffers a difficulty when applied to large-size plants. The 
existence condition formula developed in this paper is free 
of dimension inflation. 

In this paper, the matrices 02T  and 20T  are assumed to 
be square but extension to the rectangular case can be 
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readily done if the transformation of 02T  and 20T  using 
unimodular matrices in [3, 9, 11] is adopted. The constraint 
that ˆ≠i jz z  for any ,i j  in Assumption 3 can be 
loosened but it requires more complex descriptions in 
Theorem 1 and it will be presented in future publications. 
In Assumption 3, non-minimum phase zeros of 02T  and 

20T  are assumed to be simple and one of future research 
topics would be generalization of the results in this paper 
to the multiple zero case. It is expected that the methods 
of the multiple directional interpolation approach [22] 
and the generalized characteristic vectors in [23, 24] will 
play a role for the generalization. 

 
 

Appendix 
 
Lemma 1: Suppose that ( )G s  is an ×n n  stable 

rational matrix with full rank and it has distinct simple 
zeros +∈iz C , 1= →i m . Let ∗

iξ  be an output zero 
vector of iz  such that ( ) 0∗ =i iG zξ  and 1( )−G s  be 
denoted by the partial fractional expression 

 

 1

1
( ) ( )−

=

= +
−∑

m
i

i i

M
G s F s

s z , (57) 

 
where iM  is the residue matrix at iz  and ( )F s  is a 
stable matrix. The j -th row of iM  is of the form ∗

ij ik ξ , 
∈ijk C  so that 
 

 [ ]1 2, ' 0∗= = ≠i i i i i i inM k k k k kξ  (58) 
 
Proof: Notice that the rank of ( )iG z  is 1−n , which 

can be easily concluded by considering the Smith-
McMillan form of ( )G s . Next, since 1− =G G I , it 
follows that the matrix 

 

 
1

( ) ( ) ( )
=

= −
−∑

m
i

i i

M
G s I F s G s

s z  (59) 

 
must be stable and it is required that ( ) /( )−i iM G s s z  be 
stable for each i . This requires that ( ) 0=i iM G z  and 
the fact that the nullity of ( )iG z  is 1 yields that each row 
of iM  is either 0 or proportional to ∗

iξ . Q.E.D. 
The similar result for input zero vector can be stated. Let 

iμ  be an column vector such that ( ) 0=i iG z μ  and iN  
be the residue matrix of 1( )−G s  at iz . Then 

 
 1 2

ˆ ˆ ˆ ˆ ˆ, [ ] 0= = ≠i i i i i i inN k k k k kμ , ˆ ∈ijk C . (60) 
 
Lemma 2: The matrices 11T , aT  and bT  in (38) and 

(39) are stable. 
 
Proof: It is previously shown that the matrix 0K  in 

(25) is stable. That is, the matrix 

1 1
0 02 00 0 20( )− −= −K T T TΔ 1 1 1 1 1

1 02 00 0 20 1( )− − − − −= − −A P P P A Y AΔ   
  (61) 
 

is stable. It follows from (38) that 
 

1 1
11 10 11 12 02 00 0 20 20 21[ ] ( ) [ ]− −= − −q qT P P P P P P P P P PΔ  (62) 

1 1 1 1
10 11 12 1 1 02 00 0 20 20 21[ ] ( ) [ ]− − − −= − −q qP P P P A A P P P A A P P PΔ  (63) 

1
10 11 12 1 1 0 20 21[ ] ( ) [ ]−= − +q qP P P P A Y A K A P P P  (64) 

10 11 12 1 1 20 21 12 1 0 20 21{[ ] [ ] [ ]}= − − qP P P AY P P P A K A P P P  
  (65) 

 
Clearly, this matrix is stable by the stable properties in 

(4) and the fact that 0K  and qP  are stable. Stabilities of 
aT  and bT  are obvious since 1

12 02 12 1
−= =a l aT P P P A KΔ  

and 1
20 21 21
−= =b r bT P P K APΔ , where aK , bK , 12 1P A , and 

21AP  are stable. Q.E.D. 
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