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A Design on Reduction Cogging Torque of Dual Generator Radial Flux 
Permanent Magnet Generator for Small Wind Turbine 
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Abstract – In this paper, the design for an electromagnetic structure and reduction cogging torque of 
a dual generator structured RFPM generator, which is a combination of the inner- and outer-rotor 
types, has been proposed. We call this a dual generator radial flux permanent magnet generator. To 
reduce the cogging torque, firstly, stator tooth pairing was designed; secondly, stator displacement was 
designed and finally, stator tooth pairing and stator displacement were carried out simultaneously. We 
found the optimal design condition about stator tooth pairing angle combination and stator 
displacement angle for cogging torque minimization. As a result, a cogging was reduced by 93.3[%] 
by this study. 
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1. Introduction 
 
Small scale wind power applications require a cost 

effective and mechanically simple generator in order to be 
a reliable energy source. The use of direct driven generators, 
instead of geared machines, reduces the number of drive 
components, which offers the opportunity to reduce costs 
and increases system reliability and efficiency [1]. 

A small wind turbine using a permanent magnet 
essentially refer to a RFPM(Radial Flux Permanent 
Magnet) generator. The RFPM generator, which has a iron 
core slot in the stator, is easy to manufacture and has a high 
output voltage and power as well as efficiency. However, 
because of the existence of iron core slot of the stator, the 
RFPM generator experiences cogging torque [2]. 

The cogging torque can bring about an increase in the 
torque ripple, the vibration and noise generation. It is an 
important factor to consider for determination of the 
minimum wind intensity required to generate power in a 
wind generator [3]. 

Cogging torque is produced by the interaction between 
the rotor permanent magnet and the stator teeth. Many 
methods, such as a fractional number of slots per pole[3], 
[4], slot skewing [5, 6] magnet skewing [7, 8] auxiliary 
slots or teeth [3], magnet segmentation [9], pole-arc 
optimization [3], magnet displacing and shaping [10], etc. 
have been proposed to reduce the cogging torque [11]. 

The purpose of this paper is to reduce cogging torque 
and the design of the electromagnetic structure of the 
RFPM generator. To reduce the cogging torque, firstly, 
stator tooth pairing was designed; secondly, stator 
displacement was designed and finally, stator tooth pairing 

and stator displacement were carried out simultaneously. 
The RFPM generator designed in this study was analyzed 
by the two-dimensional FEM(Finite Element Method). 

 
 

2. Design of Dual Generator Radial Flux 
Permanent Magnet Generator 

 
The RFPM generator is classified into inner-rotor and 

outer-rotor types.  
An inner-rotor type RFPM generator is shown in Fig. 1. 

The rotor located inside of the stator, thereby having a 
robust mechanical structure as well as excellent mass-
production capability. However, because the rotor is 
positioned at the inner side where a permanent magnet is 
attached, its diameter is relatively smaller because of the 
structural limitation. This limitation causes difficulty in 
obtaining a high output power because of the relatively 
small cross-sectional area of the effective output as 
compared to the total volume, and requires a speed-
increasing gear between the generator and a blade because 
of the low voltage generated at a low speed caused by the 
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Fig. 1. Inner-rotor type RFPM generator 
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lack of a multi-pole structure. 
The outer-rotor type RFPM generator is shown in Fig. 2. 

Since the rotor in this generator is positioned externally 
thereby creating a bigger effective output power cross-
sectional area than that in the inner-rotor structure; this is 
advantageous in terms of the output power, and low-speed 
power generation is possible because of the presence of a 
multi-pole structure. However, in this case, since the inside 
of the stator is empty, dimensional efficiency is reduced 
and the cogging torque increases significantly as compared 
to that in the case of the inner-rotor type RFPM generator. 

In this paper, the design for an electromagnetic structure 
of a dual generator structured RFPM generator, which is a 
combination of the inner- and outer-rotor types, has been 
proposed. We call this a DG-RFPMG(Dual Generator-
Radial Flux Permanent Magnet Generator) in this paper. 

Fig. 3 shows the shape of the DG-RFPMG. The DG-
RFPMG is divided into inner and outer stators for dual 
generation, and has a rotor to which the permanent 
magnets positioned between the two stators are attached. 
Table 1 shows the design specifications of the DG-RFPMG. 

 
 

3. Cogging Torque 
 
Cogging torque is the oscillatory torque caused by the 

tendency of the rotor to line up with the stator in a 
particular direction where the permeance of the magnetic 
circuit by the magnets is maximized. Cogging torque exists 
even when there is no stator current. When the PM 
machines running, additional oscillatory torque components 
can result from the interaction of the magnet with space-
harmonics of the winding layout and with current 
harmonics in the drive current. These additional oscillatory 
torque components are electromagnetic and are generally 
referred to as torque ripple, while the term cogging torque 
is often reserved for the zero-current condition. In a well 
designed PM machines the torque ripple and the cogging 
torque should both be negligible, but it is possible for the 
torque ripple to exceed the cogging torque by a large 
amount if the PM machines has an inappropriate 
combination of winding layout, drive current, and internal 
geometry [12].  

Cogging torque can be reduced by using some 
minimization technique. Fig. 4 shows the cogging torque 
minimization technique. The methods of reducing the 
cogging torque, such as slot skewing and pole-arc to pole-
pitch ratio for specific permanent magnet machines, were 
obtained by the experience, experiments and FEM [11].  

 

 
Fig. 4. Summary of cogging torque minimization technique 

 
Fig. 2. Outer-rotor type RFPM generator 

 
Fig. 3. Shape of proposed DG-RFPMG 

 
Table 1. Specification of DG-RFPMG 

Stator Inner Side Outer Side 
outer diameter[mm] 
inner diameter[mm] 

stack length[mm] 
number of slot 

stator material grade 
air-gap[mm] 

coil diameter[mm] 
coil Turns 

space factor[%] 

205 
150 
30 
30 

S60 
1 

0.912 
94 

53.46 

280 
243 
30 
30 

S60 
1 

0.912 
83 

53.17 
Rotor Inner Side Outer Side 

outer diameter[mm](PM) 
inner diameter[mm](PM) 
magnet thickness[mm] 

number of pole 
permanent magnet grade 

229 
207 
6 

20 
Ferrite 7BE(Br:0.43T) 

241 
219 
6 

20 
Ferrite 7BE(Br:0.43T) 
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3.1 Energy method of cogging torque 
 
The cogging torque is the amount of energy variation 

with respect to the rotation amount of a rotor and can be 
represented as follows: 

 

 
( )WT ¶ a

= -
¶a

 (1) 

 
Where T, W(α), α, are the cogging torque, energy in the 

air-gap, angle of rotor, respectively.  
Since the energy variation does not occur substantially 

except in the air-gap areas, the cogging torque can be 
obtained by calculating the energy in the air-gap areas. The 
energy in these areas can be calculated as follows: 
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Where 0m , ( )G q , ( , )B θ α , SL , 1 2,R R  are 

permeability of air, relative air-gap permeance function, 
flux density function, stack length, permanent magnet 
radius and stator radius, respectively. 

The relative air-gap permeance function 2( )G q  and flux 
density function 2( , )B q a of (2) can be represented by (3) 
and (4), respectively, using the Fourier series expansion. 
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Where SN , PN  are number of slot and number of 

permanent magnet, respectively. 
Therefore, by using (3) and (4) and the orthogonality of 

the trigonometric function, we can represent (2) as (5): 
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Where LN  is least common multiple of PN  and SN . 
The cogging torque can be represented by (6) by the 

partial differentiation of the energy in the air-gap with 
respect to the rotational angle of a rotor. 
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The cogging torque can be reduced if LnNG or LnNB can 

be assumed to be zero in (6) [11, 13]. 
 
 

4. Cogging Torque Reduction Design 
 

4.1 Stator tooth pairing design 
 
Fig. 5 shows a stator tooth paring design in which the 

stator tooth widths a and b are paired. 
LnNG of (6) can be represented by (7) as follows: 
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By reducing the LNG value among values of LnNG  when 

n is 1, we can eliminate a dominant component of the 
cogging torque. That is, if a combination of tooth widths a 
and b that satisfies (8) is found, then a dominant 
component of the cogging torque can be eliminated [13]. 

 

 sin sin 0
2 2L L
a bnN nN+ =  (8) 

 
(a) Before stator tooth pairing 

 

 
(b) After stator tooth pairing 

Fig. 5. Stator tooth pairing(tooth widths a and b) 
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Table 2 presents the details of the stator tooth paring 
design where the stator teeth a and b have the maximum 

LNG  value and the sum of the design angles a and b is the 
same for different LNG  values. 

Fig. 6 shows one cycle of the cogging torque according 
to the stator tooth paring design. The analysis result 
showed that the smallest cogging torque occurred at the 
combination of 6.5-11.5[deg.(m)], which has the smallest 

LNG value. 
 

4.2 Stator displacement design 
 
The objective of the stator displacement design is to 

reduce the cogging torque by placing the inner and the 
outer stators in a staggered pattern as shown in Fig. 7 [14]. 

The cogging torque generated in the DG-RFPM 
generator is the sum of the inner and the outer stator and 
can be represented as follows: 

 
 sin sinC outer C inner Ct = t q + t q   (9) 

 
Where Ct , outert , innert , Cq  are total cogging torque, 

outer side cogging torque, inner side cogging torque, 
cogging torque phase, respectively. 

The sum of the total cogging torques can be made equal 
to zero by transitioning the cogging torque phase, which is 
generated in the outer stator as per (9), by 180 [deg.(e)] as 
shown in (10). 
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CN  denotes the number of occurrences of the cogging 
torque per rotation in a rotor generated in the inner and the 
outer stators and can be represented as follows [15]: 
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Where ,{ }S PHCF N N  is the highest common factor of 

the number of slot and number of permanent magnet. 
Therefore, the mechanical angle at which the cogging 

torque occurs once is as follows: 
 

 
360 [deg.( )]C

C

m
N

a =
o

 (12) 

 
Then, by expressing this as an electrical angle, we obtain 

the following: 
 

 [deg.( )]
2Ce C
P ea = a  (13) 

 
Therefore, the stator displacement transition angle to 

move the cogging torque phase by 180[deg.(e)], which is 
generated in the outer stator, can be represented as follows: 
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Table 2. Stator tooth pairing widths design 

a b sinNLa/2 sinNLb/2 sum 
9 9 -1.00 -1.00 -2.00 

7.6 10.4 -0.74 -0.74 -1.49 
7 11 -0.50 -0.50 -1.00 

6.5 11.5 -0.26 -0.26 -0.52 
 

 
Fig. 6. Cogging torque characteristics according to stator 

tooth pairing 

 
(a) Before displacement 

 
(b) After displacement 

Fig. 7. Definition of stator displacement 
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Fig. 8 shows one cycle of the cogging torque according 

to the stator displacement design. At the initial 0[°], a 
cogging torque of 3.88[Nm] was generated. While 
displacing the stator, we observed that the cogging torque 
was reduced by 86.6[%] to 0.52[Nm] when the stator 
location was moved by 30 [deg.(e)]. 

 
 

5. Stator Tooth Pairing and Displacement 
Combination Design 

 
The combined design optimization was considering to 

reduce the cogging torque. Fig. 9 shows two-dimensional 
FEM model of DG-RFPMG which has designed both the 
stator tooth pairing and the stator displacement. 

Fig. 10 show the distribution curve of the maximum 
cogging torque for different angles when the stator tooth 
paring and the stator displacement design are applied 

simultaneously. And Table 3 shows analysis results of 
cogging torque. The analysis results shows that the 
minimum cogging torque was 0.26[Nm], which was 
observed at the stator tooth pairing of 6.5-11.5[deg.(m)] 
and stator displacement of 30[deg.(e)]. 

 
 

6. Conclusion 
 
In this paper, we proposed the design of electromagnetic 

structure of DG-RFPMG and cogging torque reduction. To 
reduce the cogging torque, a stator tooth pairing and stator 
displacement design was applied. We found the optimal 
design condition about stator tooth pairing angle 
combination and stator displacement angle for cogging 
torque minimization. As a result, a cogging was reduced by 
93.3[%] by this study. 
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