DOI QR코드

DOI QR Code

Synthesis of Galactooligosaccharides in the Cheese Whey-based Medium by a Lactase from Lactobacillus paracasei YSM0308

  • Song, Tae-Suk (Division of Biological Science and Technology, Yonsei University) ;
  • Lee, Kyung-Sang (Division of Biological Science and Technology, Yonsei University) ;
  • Kang, Seung-Bum (Division of Biological Science and Technology, Yonsei University) ;
  • Yoo, Seong-Ho (Division of Biological Science and Technology, Yonsei University) ;
  • Lee, Jong-Ik (Samik Dairy and Food Co, Ltd.) ;
  • Yoon, Sung-Sik (Division of Biological Science and Technology, Yonsei University)
  • Received : 2013.01.15
  • Accepted : 2013.08.22
  • Published : 2013.10.31

Abstract

An enzyme ${\beta}$-galactosidase or ${\beta}$-galactohydrolase [EC3.2.1.23], commonly called lactase, mediates galacto-oligosaccharide (GOS) synthesis under conditions of high substrate concentrations. Also, lactase hydrolyzes ${\beta}$($1{\rightarrow}4$) lactose into glucose and galactose, the latter is successively transferred to free lactose to make various oligosaccharides via transgalactosylation. GOS is non-digestible to human digestive enzymes and has been used as a functional prebiotics. Among the 24 lactic acid bacteria (LAB) strains used, Lactobacillus paracasei YSM0308 was selected based on its exhibition of the highest ${\beta}$-galactoside hydrolysis activity, and the crude lactase was prepared for examination of reaction conditions to affect the GOS synthesis. Lactase activity was measured with a spectrophotometer using ONPG (o-nitropheyl ${\beta}$-D-galactopyranoside) method. Lactase activity was not detected in the culture supernatant and was mostly present in the cell pellet after centrifugation. Activity of the crude lactase preparation ranges from102 to 1,053 units/mL, with the highest activity determined for L. paracasei YSM0308. Optimal conditions for GOS synthesis are as follows: concentration of whey powder, pH, temperature, and time were 30%, pH 6.5-7.0, $30^{\circ}C$, and 4 h, respectively. The final GOS concentration was 19.41% (w/v) by the crude YSM0308 lactase, which was obtained from strain YSM0308 grown in the 10% (w/v) reconstituted whey-based medium.

Keywords

References

  1. Boehm, B. and Stahl, B. (2007) Oligosaccharides from Milk. J. Nutr. 137, 847S-849S.
  2. Boon, M. A., Janssen, A. E. M., and Van der Padt, A. (2000) Effects of temperature and enzyme origin on the enzymatic synthesis of oligosaccharides. Enzyme Microbiol. Technol. 26, 271-281. https://doi.org/10.1016/S0141-0229(99)00167-2
  3. Carlos, V., Cecilia, G., Raul, C., and Andres, I. (2012) Synthesis of galacto-oligosaccharides by ${\beta}$-galactosidase from Aspergillus oryzae using partially dissolved and supersaturated solution of lactose. Enzyme Microbol. Technol. 50, 188-194. https://doi.org/10.1016/j.enzmictec.2011.12.003
  4. Cho, Y. J., Shin, H. J., and Bucke, C. (2003) Purification and biochemical properties of a galactooligosaccharide producing ${\beta}$-galactosidase from Bullera singularis. Biotechnol. Lett. 25, 2107-2111. https://doi.org/10.1023/B:BILE.0000007077.58019.bb
  5. Fujimoto, H., Miyasato, M., Ito, Y., Sasaki, T., and Ajisaka, K. (1998) Purification and properties of recombinant ${\beta}$-galactosidase from Bacillus circulans. Glycoconjugate J. 15, 155-160. https://doi.org/10.1023/A:1006916222187
  6. Hinz, S. W. A., van den Broek, L. A. M., Beldman, G., Vincken, J. P., and Voragen, A. G. J. (2004) ${\beta}$-Galactosidase from Bifidobacterium adolescentis DSM290083 prefers ${\beta}(1,4)$-galactosides over lactose. Appl. Microbiol. Biotechnol. 66, 276-284. https://doi.org/10.1007/s00253-004-1745-9
  7. Hung, M. N. and Lee, B. H. (2002) Purification and characterization of a recombinant ${\beta}$-galactosidase with transgalctosylation activity from Bifidobacterium infantis HL96. Appl. Microbiol. Biotechnol. 58, 439-445. https://doi.org/10.1007/s00253-001-0911-6
  8. Ishikawa, E., Sakai, T., Ikemura, H., Matsumoto, K., and Abe, H. (2005) Identification, cloning, and characterization of a Sporobolomyces singularis ${\beta}$-galactosidase-like enzyme involved in galacto-oligosaccharide production. J. Biosci. Bioeng. 99, 331-339. https://doi.org/10.1263/jbb.99.331
  9. Itoh, T., Suzuki, M., and Adachi, S. (1982) Production and characterization of ${\beta}$-galactosidase from lactose-fermenting yeast. Agric. Biol. Chem. 46, 899-904. https://doi.org/10.1271/bbb1961.46.899
  10. Jeong, J. K., Kwon, O. S., Lee, Y. M., Oh, D. B., Lee, J. M., Kim, S. H., Kim, E. H., Lee, T. N., Rhee, D. K., and Kang, H. A. (2009) Characterization of the Streptococcus pneumoniae BgaC protein as a novel surface ${\beta}$-galactosidase with specific hydrolysis acitivity for the Gal ${\beta}1$-3GlcNAc moiety of oligosaccharides. J. Bacteriol. 191, 3011-3023. https://doi.org/10.1128/JB.01601-08
  11. Kang, S. C., Yun, J. W., and Ro, T. W. (1996) Effect of oligosaccharide on mannitol accumulation during fermentation of Kimchi. Korean J. Biotechnol. Bioeng. 11, 181-185.
  12. Kim, C. S., Ji, E. S. and Oh, D. K. (2003) Expression and characterization of Kluyveromyces lactis ${\beta}$-galactosidase in Escherichia coli. Biotechnol. Lett. 25, 1769-1774. https://doi.org/10.1023/A:1026092029785
  13. Kim, K. S. and Chae, Y. K. (1997) The effects of addition of oligosaccharide on the quality characteristics of tomato jam. Korean J. Food Sci. Technol. 13, 348-354.
  14. Kosikowski, F. (1997) Cheese and fermented milk foods. 3rd ed., Brooktondale, New York, pp.446-450.
  15. Ladero, M., Santos, A., Garcia, J. L., Carrascosa, A. V., Pessela, B. C. C., and Carcia-Ochoa F. (2002) Studies on the acitivity and the stability of ${\beta}$-galctosidases from Thermus sp. strain T2 and from Kluyveromyces fragilis. Enzyme Microbiol. Technol. 30, 392-405. https://doi.org/10.1016/S0141-0229(01)00506-3
  16. Lee, S. E., Seo, H. B., Kim, H. J., Yeon, J. H., and Jung, K. H. (2011) Galactooligosaccharide synthesis by active ${\beta}$-galactosidase inclusion bodies-containing Escherichia coli cells. J. Microbiol. Biotechnol. 21, 1151-1158. https://doi.org/10.4014/jmb.1105.05021
  17. Li, Y., Wang, H., Lu, L., Li, Z., Xu, X., and Xiao, M. (2009) Purification and characterization of a novel ${\beta}$-galactosidase with transglycosylation activity from Bacillus megaterium 2-37-4-1. Appl. Biochem. Biotechnol. 158, 192-199. https://doi.org/10.1007/s12010-008-8310-4
  18. Lu, L., Xiao, M., Xu, X., Li, Z., and Li, Y. (2007) A novel ${\beta}$-galctosidase capable of glycosyl transfer from Enterobacter agglomerans B1. Biochem. Biophys. Res. Commun. 356, 78-84. https://doi.org/10.1016/j.bbrc.2007.02.106
  19. Nguyen, T. H., Splechtina, B., Steinbock, M., Kneifel, W., Lettner, H. P., Kulbe, K. D. and Haltrich, D. (2006) Purification and characterization of two novel ${\beta}$-galcactosidases from Lactobacillus reuteri. J. Agric. Food Chem. 54, 4989-4998. https://doi.org/10.1021/jf053126u
  20. Nguyen, T. H., Splechtna, B., Krasteva, S., Kneifel, W., Kulbe, K. D., Divne, C., and Haltrch, D. (2007) Characterization and molecular cloning of a heterodimeric ${\beta}$-galactosidase from the probiotic strain Lactobacillus acidophilus R22. FEMS Microbiol. Lett. 269, 136-144. https://doi.org/10.1111/j.1574-6968.2006.00614.x
  21. Ohtsuka, K., Tanoh, A., Ozawa, O., Kanematsu. T., Uchida. T., and Shinke, R. (1990) Purification and properties of a ${\beta}$-galactosidase with high galactosyl transfer activity from Cryptococcus laurentii OKN-4. J. Ferment. Bioeng. 70, 301-307. https://doi.org/10.1016/0922-338X(90)90138-M
  22. Onishi, N. and Tanaka, T. (1998) Galacto-oligosaccharide production using a recycling cell culture of Sterigmatomyces elviae CBS8119. Lett. Appl. Microbiol. 26, 136-139. https://doi.org/10.1046/j.1472-765X.1998.00293.x
  23. Park, A. R. and Oh, D. K. (2010) Galactooligosaccharide production using microbial ${\beta}$-galactosidase: Current state and perspectives. Appl. Microbiol. Biotechnol. 85, 1279-1286. https://doi.org/10.1007/s00253-009-2356-2
  24. Park, K. H., Kim, M. J., Lee, H. S., Han, N. S., Kim, D., and Robyt, J. F. (1998) Transglycosylation reactions of Bacillus stearothermophilus maltogenic amylase with acarbose and various acceptors. Carbohydr Res. 313, 235-246. https://doi.org/10.1016/S0008-6215(98)00276-6
  25. Placier, G., Watzlawick, H., Rabiller, C., and Mattes, R. (2009) Evolved beta-galactosidases from Geobacillus stearothermophilus with improved transgalactosylation yield for galacto-oligosaccharide production. Appl. Environ. Microbiol. 75, 6312-6321. https://doi.org/10.1128/AEM.00714-09
  26. Rech, R, Cassini, C, Secchi, A, and Ayub, M. (1999) Utilization of protein-hydrolyzed cheese whey for production of beta-galactosidase by Kluyveromyces marxianus. J. Ind. Microbiol. Biotechnol. 23, 91-96. https://doi.org/10.1038/sj.jim.2900692
  27. Splechtna, B., Nguyen, T. H., Steinbock, M., Kulbe, K. D., Lorenz, W., and Haltrich, D. (2006) Production of prebiotic galactooligosaccharides from lactose using ${\beta}$-galactosidases from Lactobacillus reuteri. J. Agric. Food Chem. 54, 4999-5006. https://doi.org/10.1021/jf053127m
  28. Todorova-Balvay, D., Stoilova, I., Gargova, S., and Vijayalakshmi, M. A. (2006) An efficient two step purification and molecular characterization of ${\beta}$-galactosidases from Aspergillus oryzae. J. Mol. Recognit. 19, 299-304. https://doi.org/10.1002/jmr.788
  29. van Casteren, W. H. M., Eimermann, M., van den Broek, L. A. M., Vincken, J. P., Schols, H. A., and Voragen A. G. J. (2000) Purification and characterization of a ${\beta}$-galactosidase from Aspergillus aculeatus with activity toward (modified) exopolysaccharides from Lactococcus lactis subsp. cremoris B39 and B891. Carbohydr. Res. 329, 75-85. https://doi.org/10.1016/S0008-6215(00)00152-X

Cited by

  1. A natural odor attraction between lactic acid bacteria and the nematode Caenorhabditis elegans vol.10, pp.3, 2016, https://doi.org/10.1038/ismej.2015.134
  2. Influence of lactose hydrolysis on galacto-oligosaccharides, lactose, volatile profile and physicochemical parameters of different yogurt varieties vol.96, pp.15, 2016, https://doi.org/10.1002/jsfa.7870
  3. The impact of membrane pretreatment on the enzymatic production of whey-derived galacto-oligosaccharides vol.41, pp.2, 2017, https://doi.org/10.1111/jfpe.12649
  4. Synthesis of Galactooligosaccharides in Milk and Whey: A Review vol.17, pp.3, 2018, https://doi.org/10.1111/1541-4337.12344
  5. Whey valorization using transgalactosylation activity of immobilized β‐galactosidase vol.54, pp.11, 2013, https://doi.org/10.1111/ijfs.14222
  6. Optimal Production of β-Galactosidase from Lactobacillus fermentum for the Synthesis of Prebiotic Galactooligosaccharides (Gos) vol.14, pp.4, 2013, https://doi.org/10.22207/jpam.14.4.53