DOI QR코드

DOI QR Code

Physiological Characteristics and GABA Production of Lactobacillus plantarum K255 Isolated from Kimchi

  • Received : 2013.04.01
  • Accepted : 2013.09.26
  • Published : 2013.10.31

Abstract

As a major inhibitory neurotransmitter of the central nervous system in animals, ${\gamma}$-aminobutyric acid (GABA) has several physiological functions, such as anti-hypertensive, diuretic, tranquilizer and anti-stress effects in human. In order to determine strains with high GABA producing ability and glutamate decarboxylase (GAD) activity, 273 bacteria were isolated from various types of Kimchi. Strain K255 contained $386.37{\mu}g/mL$ of GABA in MRS broth containing 1% MSG, $600.63{\mu}g/mL$ of GABA in MRS broth containing 2% MSG and $821.24{\mu}g/mL$ of GABA in MRS broth containing 3% MSG. It showed that K255 had the highest GABA production ability compared to other commercial lactic acid bacteria. K255 was identified as Lactobacillus plantarum based on its API carbohydrate fermentation pattern and 16S rDNA sequence. K255 was investigated for its physiological characteristics. The optimum growth temperature of K255 was $37^{\circ}C$and cultures took 13 h to reach the pH 4.4. K255 showed more sensitive to bacitracin in a comparison of fifteen different antibiotics, and showed most resistance to kanamycin and vancomycin. Moreover, it was comparatively tolerant to bile juice and acid and displayed resistance to Escherichia coli, Salmonella Typhimurium, Staphylococcus aureus, with rates of 30.8%, 29.7%, and 23.4% respectively. These results demonstrate that K255 could be an excellent strain for the production of functional products.

Keywords

References

  1. Bae, M. O., Kim, H. J., Cha, Y. S., Lee, M. K., and Oh, S. H. (2009) Effects of Kimchi lactic acid bacteria Lactobacillus sp. OPK2-59 with high GABA producing capacity on liver function improvement. J. Korean Soc. Food Sci. Nutri. 38, 1499-1505. https://doi.org/10.3746/jkfn.2009.38.11.1499
  2. Beaud, D., Tailliez, P., and Anba-Mondoloni, J. (2005) Genetic characterization of the ${\beta}$-glucuronidase enzyme from a human intestinal bacterium, Ruminococcus gnavus. Microbiology 151, 2323-2330. https://doi.org/10.1099/mic.0.27712-0
  3. Booth, I. R. (1985) Regulation of cytoplasmic pH in bacteria. Microbiol. Rev. 49, 359-378.
  4. Buchanan, R. E. and Gibbons, N. E. (1974) Bergey's manual of determinative bacteriology. 8th ed, Waverly Press, Inc., Baltimore, pp. 576-593.
  5. Cheigh, H. S. and Park, K. Y. (1994) Biochemical, microbiological, and nutritional aspects of Kimchi (Korean fermented vegetable products). Crit. Rev. Food Sci. 34, 175-203. https://doi.org/10.1080/10408399409527656
  6. Cho, J. H., Lee, D. Y., Yang, C. N., Jeon, J. I., Kim, J. H., and Han, H. U. (2006) Microbial population dynamics of Kimchi, a fermented cabbage product. FEMS Microbiol. Lett. 257, 262-267. https://doi.org/10.1111/j.1574-6968.2006.00186.x
  7. Clark, P. A., Cotton, L. N., and Martin, J. H. (1993) Selection of bifidobacteria for use as dietary adjuncts in cultured dairy foods: II. Tolerance to simulated pH of human stomachs. Cul. Dairy Prod. J. 28, 11-14.
  8. Gilliland, S. E. and Speck, M. L. (1977) Antagonistic action of Lactobacillus acidophilus toward intestinal and foodborne pathogens in associative cultures. J. Food Prot. 40, 820-823. https://doi.org/10.4315/0362-028X-40.12.820
  9. Gilliland, S. E. and Walker D. K. (1990) Factors to consider when selecting a culture of Lactobacillus acidophilus as a dietary adjunct to produce a hypocholesterolemic effect in humans. J. Dairy Sci. 73, 905-911. https://doi.org/10.3168/jds.S0022-0302(90)78747-4
  10. Hur, H. J., Lee, K. W., Kim, H. Y., Chung, D. K., and Lee, H. J. (2006) In vitro immunopotentiating activities of cellular fractions of lactic acid bacteria isolated from Kimchi and bifidobacteria. J. Microbiol. Biotechnol. 16, 661-666.
  11. Jakobs, C., Jaeken, J., and Gibson, K. M. (1993) Inherited disorders of GABA metabolism. J. Inherit. Metab. Dis. 16, 704-715. https://doi.org/10.1007/BF00711902
  12. Jeon, S. R., Song, T. S., Kim, J. Y., Shin, W. C., Her, S. W., and Yoon, S. S. (2007) Identification and characterization of lactic acid bacteria starters isolated from the commercial drink-yogurt products. Korean J. Food Sci. An. 27, 509-516. https://doi.org/10.5851/kosfa.2007.27.4.509
  13. Kim, J. H., Kwon, M. J., Lee, S. Y., Rye, J. D., Moon, G. S., Cheigh, H. S., and Song, Y. O. (2002) The effect of Kimchi intake on production of free radicals and anti-oxidative enzyme activities in the liver of SAM. J. Korean Soc. Food Sci. Nutr. 31, 109-116. https://doi.org/10.3746/jkfn.2002.31.1.109
  14. Kim, S. H., Yang, J. Y., Kang, S. A., Chun, H. K., and Park, K. Y. (2007) Current state and improvement for Korean Kimchi industry. Food Indus. Nutr. 12, 7-13.
  15. Kim, Y. J., Jang, S. J., Park, J. M., Kim, C. U., and Park, Y. S. (2010) Culture conditions of garlic resistant lactic acid bacteria for feed additives. Food Eng. Progress 14, 65-74.
  16. Kirjavainen, P. V., Ouwehand, A. C., Isolauri, E., and Salminen, S. J. (1998) The ability of probiotic bacteria to bind to human intestinal mucus. FEMS Microbiol. Lett. 167, 185-189. https://doi.org/10.1111/j.1574-6968.1998.tb13226.x
  17. Lee, N. K., Yun, C. W., Kim, S. W., Chang, H. I., Kang, C. W., and Paik, H. D. (2008) Screening of lactobacilli derived from chicken feces and partial characterization of Lactobacillus acidophilus A12 as animal probiotics. J. Microbial. Biotechnol. 18, 338-342.
  18. Lee, Y. K. and Salminen, S. (1995). The coming age of probiotics. Trends Food Sci. Technol. 6, 241-245. https://doi.org/10.1016/S0924-2244(00)89085-8
  19. Lim, S. D., Kim, K. S., and Do, J. R. (2011) Physiological characteristics and production of vitamin K2 by Lactobacillus fermentum LC272 isolated from raw milk. Korean J. Food Sci. An. 31, 513-520. https://doi.org/10.5851/kosfa.2011.31.4.513
  20. Manyam, B. V., Katz, L., Hare, T. A., Kaniefski, K., and Tremblay, R. D. (1981) Isoniazid induced elevation of cerebrospinal fluid (CSF) GABA levels and effects on chorea in huntington's disease. Ann. Neurol. 10, 7-35.
  21. Matsumoto, M., Ohishi, H., and Benno, Y. (2004) $H^+$-ATPase activity in bifidobacterium with special reference to acid tolerance. Int. J. Food Microbiol. 93, 109-113. https://doi.org/10.1016/j.ijfoodmicro.2003.10.009
  22. Mcdonald, L. C., Fleming, H. P., and Hassan, H. M. (1990) Acid tolerance of Leuconostoc mesenteroides and Lactobacillus casei. Appl. Environ. Microbial. 53, 2124-2128.
  23. Medina, R., Katz, M., Gonzalez, S., and Oliver, G. (2001) Characterization of the lactic acid bacteria in ewe's milk and cheese from Northwest Argentina. J. Food Prot. 64, 559-563.
  24. Oh, S. H., Kim, H. J., Kim, Y. H., Yu, J. J., Park, K. B., and Jeon, J. I. (2008) Changes in some physico-chemical properties and ${\gamma}$-aminobutyric acid content of Kimchi during fermentation and storage. J. Food Sci. Nutr. 13, 219-224. https://doi.org/10.3746/jfn.2008.13.3.219
  25. Oh, S. H. and Yu, J. J. (2011) ${\gamma}$-Aminobutyric acid production and glutamate decarboxylase activity of Lactobacillus sakei OPK2-59 isolated from Kimchi. Korean J. Microbiol. 47, 316-322.
  26. Rojo-Bezares, B., Saenz, Y., Poeta, P., Zarazaga, M., Ruiz-Larrea, F., and Torres, C. (2006) Assessment of antibiotic susceptibility within lactic acid bacteria strains isolated from wine. Int. J. Food Microbiol. 111, 234-240. https://doi.org/10.1016/j.ijfoodmicro.2006.06.007
  27. Saikusa, T., Horino, T., and Mori, Y. (1994) Accumulation of ${\gamma}$-aminobutyric acid (GABA) in the rice germ during water soaking. Biosci. Biotech. Biochem. 58, 292-2291.
  28. Succi, M., Tremonte, P., Reale, A., Sorrentino, E., Grazia, L., and Pacifico, S. (2005) Bile salt and acid tolerance of Lactobacillus rhamnosus strains isolated from Parmigiano Reggiano cheese. FEMS Microbiol. Lett. 244, 129-137. https://doi.org/10.1016/j.femsle.2005.01.037
  29. Tsushida, T. and Murai, T. (1987) Conversion of glutamic acid to g-aminobutyric acid in tea leaves under anaerobic conditions. Agric. Biol. Chem. 51, 2865-2871. https://doi.org/10.1271/bbb1961.51.2865
  30. Ueno, H. (2000) Enzymatic and structural aspects on glutamate decarboxylase. J. Mol. Catal. B-Enzym. 10, 67-79. https://doi.org/10.1016/S1381-1177(00)00114-4
  31. Vaiva, G., Thomas, P., Ducrocq, F., Fontaine, M., Boss, V., Devos, P., Rascle, C., Cottencin, O., Brunet, A., Laffargue, P., and Coudemand, M. (2004) Low posttrauma GABA plasma levels as a predictive factor in the development of acute post-traumatic stress disorder. Biol. Psychiat. 55, 250-254. https://doi.org/10.1016/j.biopsych.2003.08.009
  32. Ventura, M., Canchaya, C., van Sinderen, D., Fitzgerald, G. F., and Zink, R. (2004) Bifidobacterium lactis DSM 10140: identification of the atp (atpBEFHAGDC) operon and analysis of its genetic structure, characteristics, and phylogeny. Appl. Environ. Microbiol. 70, 3110-3121. https://doi.org/10.1128/AEM.70.5.3110-3121.2004
  33. Wong, C. G. T., Bottiglieri, T., and Snead, O. C. (2003) GABA, ${\gamma}$-hydroxybutyric acid, and neurological disease. Ann. Neurol. 54. S3-S12.
  34. Zhang, G. and Bown, A.W. (1997) The rapid determination of gamma aminobutyric acid. Phytochem. 44, 1007-1009. https://doi.org/10.1016/S0031-9422(96)00626-7

Cited by

  1. LRCC5193, a Plant-Origin Lactic Acid Bacterium Isolated from Kimchi and Its Use in Chocolates pp.00221147, 2018, https://doi.org/10.1111/1750-3841.14364
  2. MSG 첨가 비율을 달리한 섬애약쑥(Artemisia argyi H) 식혜의 유산균 발효에 따른 이화학적 특성 vol.24, pp.2, 2013, https://doi.org/10.11002/kjfp.2017.24.2.254
  3. 한국전통주인 막걸리로부터 분리한 Lactobacillus plantarum subsp. plantarum B-134의 gamma-aminobutyric acid (GABA)의 생산 vol.27, pp.5, 2017, https://doi.org/10.5352/jls.2017.27.5.567
  4. Chemical Characteristics and Microbial Diversity of Ayu-narezushi from Gifu vol.67, pp.3, 2013, https://doi.org/10.3136/nskkk.67.101
  5. Relationship of the U-Factor and Chemical Structure with Applied Metal and Polymer Material Assembly in Curtain Wall Frame vol.31, pp.8, 2013, https://doi.org/10.3740/mrsk.2021.31.8.450