DOI QR코드

DOI QR Code

The study of thermal properties of graphene/Cu foam hybrid structures

그래핀/구리폼과 그래파이트 하이브리드 구조체의 열전도 특성 연구

  • Kim, Hee Jin (Electronic Materials & Device Research Center, Korea Electronics Technology Institute) ;
  • Kim, Hyeungkeun (Electronic Materials & Device Research Center, Korea Electronics Technology Institute) ;
  • Kim, Yena (Electronic Materials & Device Research Center, Korea Electronics Technology Institute) ;
  • Lee, Woo Sung (Electronic Materials & Device Research Center, Korea Electronics Technology Institute) ;
  • Yoon, Dae Ho (School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Yang, Woo Seok (Electronic Materials & Device Research Center, Korea Electronics Technology Institute)
  • 김희진 (전자부품연구원 전자소재응용연구센터) ;
  • 김형근 (전자부품연구원 전자소재응용연구센터) ;
  • 김예나 (전자부품연구원 전자소재응용연구센터) ;
  • 이우성 (전자부품연구원 전자소재응용연구센터) ;
  • 윤대호 (성균관대학교 신소재공학부) ;
  • 양우석 (전자부품연구원 전자소재응용연구센터)
  • Received : 2013.09.02
  • Accepted : 2013.10.08
  • Published : 2013.10.31

Abstract

Pure-carbon materials such as graphite, graphene, carbon nanotubes, and diamond have very high thermal conductivities. The reported thermal conductivity of graphene is in the range 3000~5000W/m-K at room temperature. Here, we developed graphene/cu foam hybrid type heat spreader to obtain higher thermal conductivity than Cu foam. Hybrid materials were characterized using optical microscopy (OM), scanning electron microscopy (SEM) and thermal conductivity measurement system; LFA (Laser Flash Analysis @ LFA 447, NETZSCH). We suggest that excellent thermal properties of graphene/cu foam hybrid structures are beneficial for all proposed electrical applications and can lead to a thermal management application.

그래핀(Graphene)은 전기 전도성 및 열전도성이 우수하고 1 nm 수준의 초 박막 형 필름 소재를 제조할 수 있다는 장점으로 인하여, 차세대 트랜지스터 소자 및 디스플레이 장치에 적용 가능한 방열 소재로서 많은 연구가 활발히 진행되고 있다. 또한 CVD(chemical vapor deposition)제조법으로 합성된 그래파이트(Graphite)는 구조의 단순성 및 유연성 때문에 안정하고 열에 강한 탄소계 방열소재로 주목 받고 있다. 본 연구는 열전도도가 우수한 폼(foam)형태의 구리를 촉매로 상압과 진공에서의 CVD법을 이용하여 그래핀을 성장시킨 후 구리 폼의 기공 안에 다양한 종류의 그래파이트(Natural graphite, expandable(/expanded) graphite, etc)를 복합 및 안정화시켜 기존보다 높은 열전도도를 가지는 방열소재를 개발하였다. 제조된 금속폼/그래파이트 소재를 OM(optical microscopy)과 SEM(scanning electron microscopy)을 이용하여 표면을 확인하였고 DSC(Differential Scanning Calorimetry), 아르키메데스 법을 활용한 비열, 밀도 결과를 확보하였다. 또한 LFA(Laser Flash Analysis)를 이용하여 열 확산계수 예측을 통한 열전도 특성을 평가하였다.

Keywords

References

  1. W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri and A Majumdar, "Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors", Phys. Rev. Lett. 96 (2006) 045901. https://doi.org/10.1103/PhysRevLett.96.045901
  2. W. Zhou, D. Yu, C. Min, Y. Fu and X. Guo, "Thermal, dielectric, and mechanical properties of SiC particles filled linear low-density polyethylene composites", J. Appl. Polym. Sci. 112 (2009)1695. https://doi.org/10.1002/app.29602
  3. Lu Tianjian, "Ultralight porous metals: From fundamentals to applications", AMS. 18 (2002) 457.
  4. Nidia C. Gallego and James W. Klett, "Carbon foams for thermal management", Carbon. 41 (2003) 1461. https://doi.org/10.1016/S0008-6223(03)00091-5
  5. Tran Van Khai, Maneeratanasarn Prachuporn and K.B. Shim, "$NO_2$ gas sensing based on graphene synthesized via chemical reduction process of exfoliated graphene oxide", J. Korean Crystal Growth and Crystal Technology 22 (2012) 84. https://doi.org/10.6111/JKCGCT.2012.22.2.084
  6. C. Lee, X. Wei, J.W. Kysar and J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene", Science, 321 (2008) 385. https://doi.org/10.1126/science.1157996
  7. A.A. Balandin, et al., "Superior thermal conductivity of single-layer graphene", Nano Lett. 8 (2008) 902. https://doi.org/10.1021/nl0731872
  8. C.Y. Zhao and Z.G. Wu, "Heat transfer enhancement of high temperature thermal energy storage using metal foams and expanded graphite", SEM&SC. 95 (2011) 636.
  9. H. Kim, Y. Kim, T.Y. Kim, A.-R. Jang, H.Y. Jeong, S.H. Han, D.H. Yoon, H.S. Shin, D.J. Bae, K.S. Kim and S.Y. Yang, "Enhanced optical response of hybridized $VO_2$/graphene films", Nanoscale 5 (2013) 2632. https://doi.org/10.1039/c3nr34054f
  10. S. Bae, et al., "Roll-to-roll production of 30-inch graphene films for transparent electrodes", Nature Nanotech. 5 (2010) 574. https://doi.org/10.1038/nnano.2010.132
  11. Y.y. Wang, Z.h. Ni, T. Yu, Z.X. Shen, H.m. Wang, Y.h. Wu, W. Chen and A.T.S. Wee, "Raman studies of monolayer graphene: The substrate effect", J. Phys. Chem. C. 112 (2008) 10637. https://doi.org/10.1021/jp8008404
  12. T.S. Jun, N.H. Park, D.S. So, J.W. Lee, H.S. Lim, H. Ham and K.B. Shim "Synthesis of graphene nano-sheet without catalysts and substrates using fullerene and spark plasma sintering process", J. Korean Crystal Growth and Crystal Technology 23 (2013) 27. https://doi.org/10.6111/JKCGCT.2013.23.1.027
  13. M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cancado, A. Jorio and R. Saito, "Studying disorder in graphite-based systems by Raman spectroscopy", PCCP. 9 (2007) 1276. https://doi.org/10.1039/b613962k
  14. G. Amirthan, A. Udaya Kumar and M. Balasubramanian, "Thermal conductivity studies on Si/SiC ceramic composites", Ceramics International 37 (2011) 423. https://doi.org/10.1016/j.ceramint.2010.09.003