DOI QR코드

DOI QR Code

Synthesis of TiO2/active carbon composites via hydrothermal process and their photocatalytic performance

수열합성법에 의한 TiO2/active carbon 복합체의 제조 및 광촉매특성

  • Kim, Dong Jin (Department of Materials Engineering, Korea Maritime University) ;
  • Lee, Jin Hee (Department of Materials Engineering, Korea Maritime University) ;
  • Lee, Byeong Woo (Department of Materials Engineering, Korea Maritime University)
  • 김동진 (한국해양대학교 재료공학과) ;
  • 이진희 (한국해양대학교 재료공학과) ;
  • 이병우 (한국해양대학교 재료공학과)
  • Received : 2013.08.30
  • Accepted : 2013.10.02
  • Published : 2013.10.31

Abstract

Granular bamboo-derived active carbons (AC) were impregnated (or coated) with $TiO_2$ nano crystalline powders. The photocatalytic activity of the $TiO_2$-impregnated active carbons ($TiO_2$/AC) were determined on the basis of the degradation rate of methylene-blue aqueous solution under UV irradiation. The active compounds of $TiO_2$ were impregnated onto the AC under moderate hydrothermal conditions (${\leq}200^{\circ}C$, pH 11). The mean size of $TiO_2$ particles calculated from BET surface area were found to be as 50 nm. The $TiO_2$ precipitates were coated on the cavities or pores on the surfaces of highly activated carbons. Since the hydrothermal process led to a lowering of the on-set temperature of the anatase-to-rutile transition of $TiO_2$ as low as $200^{\circ}C$, $TiO_2$ crystallites of a pure anatase or a mixed form with rutile were successfully coated on the AC depending on the synthesis temperatures.

입상(대나무)활성탄 상에 나노 $TiO_2$ 결정을 담지 즉 분말코팅 하였다. 이와 같이 $TiO_2$ 담지된 활성탄 복합체의 광촉매 활성도는 자외선 조사를 통한 메틸렌블루 수용액의 분해를 통해 측정하였다. 저온 수열합성법(${\leq}200^{\circ}C$, pH 11)을 통해 광학적 촉매활성도가 높은 $TiO_2$를 활성탄 상에 담지 할 수 있었으며, BET 표면적을 측정하여 계산된 $TiO_2$ 분말의 평균입도는 50 nm 정도였다. 수열처리 과정에서 $TiO_2$가 합성되면서 동시에 활성탄의 표면 공극과 기공 상에 코팅이 이루어졌다. 이러한 수열합성법을 통한 합성은 $TiO_2$의 anatase에서 rutile로의 상전이 시작 온도를 $200^{\circ}C$ 부근으로 낮추는 결과를 가져올 수 있어, 합성온도에 따라 저온에서 순수한 anatase 또는 anatase와 rutile이 혼합된 $TiO_2$ 결정상들을 코팅 시킬 수 있었다.

Keywords

References

  1. A. Fujishima, T.N. Rao and D.A. Truk, "Titanium dioxide photocatalysis", J. Photochem. Photobiol. C: Photochem. Rev. 1 (2000) 1. https://doi.org/10.1016/S1389-5567(00)00002-2
  2. Q.D. Huang and C.S. Hong, "$TiO_2$ photocatalytic degradation of PCBs in soil-water systems containing fluoro surfactant", Chemosphere 41 (2000) 871. https://doi.org/10.1016/S0045-6535(99)00492-0
  3. D. Dong, P. Li, X. Li, C. Xu, D. Gong, Y. Zhanga, Q. Zhao and P. Li, "Photocatalytic degradation of phenanthrene and pyrene on soil surfaces in the presence of nanometer rutile $TiO_2$ under UV-irradiation", Chem. Engin. J. 158 (2010) 378. https://doi.org/10.1016/j.cej.2009.12.046
  4. A. Garcia and J. Matos, "Photocatalytic activity of $TiO_2$ on activated carbon under visible light in the photodegradation of phenol", Open Mater. Sci. J. 4 (2010) 2. https://doi.org/10.2174/1874088X01004020002
  5. A. Hanel, P. Moren, A. Zaleska and J. Hupka, "Photocatalytic activity of $TiO_2$ immobilized on glass beads", Physicochem. Probl. Miner. Process 45 (2010) 49.
  6. B. Sun and P.G. Smirniotis, "Interaction of anatase and rutile $TiO_2$ particles in aqueous photooxidation", Catal. Today 88 (2003) 49. https://doi.org/10.1016/j.cattod.2003.08.006
  7. S. Mahata and D. Kundu, "Hydrothermal synthesis of aqueous nano-$TiO_2$ sols", Mater. Sci.-Poland 27 (2009) 463.
  8. K.C. Song and S.E Pratsinis, "Synthesis of bimodally porous titania powders by hydrolysis of titanium tetraisopropoxide", J. Mater. Res. 15 (2000) 2322. https://doi.org/10.1557/JMR.2000.0334
  9. Y. Bessekhouad, D. Robert and J.V. Weber, "Preparation of $TiO_2$ nanoparticles by Sol-Gel route", Inter. J. Photoenergy 5 (2003) 153. https://doi.org/10.1155/S1110662X03000278
  10. D.A.H. Hanaor and C.C. Sorrell, "Review of the anatase to rutile phase transformation", J. Mater. Sci. 46 (2011) 855. https://doi.org/10.1007/s10853-010-5113-0
  11. L. Saadoun, J.A. Ayllon, J. Jimenez-Becerril, J. Peral, X. Domenech and R. Rodriguez-Clemente, "Synthesis and photocatalytic activity of mesoporous anatase prepared from tetrabutylammonium-titania composites", Mater. Res. Bull. 35 (2000) 193. https://doi.org/10.1016/S0025-5408(00)00204-X
  12. N. Kannan and M.M. Sundaram, "Kinetics and mechanism of removal of methylene blue by adsorption on various carbons-a comparative study", Dyes and Pigments 51 (2001) 25. https://doi.org/10.1016/S0143-7208(01)00056-0
  13. N. Soltani, E. Saion, M.Z. Hussein, M. Erfani, A. Abedini, G. Bahmanrokh, M. Navasery and P. Vaziri, "Visible light-induced degradation of methylene blue in the presence of photocatalytic ZnS and CdS nanoparticles", Int. J. Mol. Sci. 13 (2012) 12242. https://doi.org/10.3390/ijms131012242