DOI QR코드

DOI QR Code

Approximation of Multiple Trait Effective Daughter Contribution by Dairy Proven Bulls for MACE

젖소 국제유전능력 평가를 위한 종모우별 다형질 Effective Daughter Contribution 추정

  • 조광현 (농촌진흥청 국립축산과학원) ;
  • 최태정 (농촌진흥청 국립축산과학원) ;
  • 조충일 (농촌진흥청 국립축산과학원) ;
  • 박경도 (국립한경대학교 유전정보연구소) ;
  • 도경탁 (국립한경대학교 유전정보연구소) ;
  • 오재돈 (국립한경대학교 유전정보연구소) ;
  • 이학교 (국립한경대학교 유전정보연구소) ;
  • 공홍식 (국립한경대학교 유전정보연구소) ;
  • 이준호 (국립한경대학교 유전정보연구소)
  • Received : 2013.07.15
  • Accepted : 2013.08.21
  • Published : 2013.10.31

Abstract

This study was conducted to investigate the basic concept of multiple trait effective daughter contribution (MTEDC) for dairy cattle sires and calculate effective daughter contribution (EDC) by applying a five lactation multiple trait model using milk yield test records of daughters for the Multiple-trait Across Country Evaluation (MACE). Milk yield data and pedigree information of 301,551 cows that were the progeny of 2,046 Korean and imported dairy bulls were collected from the National Agricultural Cooperative Federation and used in this study. For MTEDC approximation, the reliability of the breeding value was separated based on parents average, own yield deviation and mate adjusted progeny contribution. EDC was then calculated by lactation using these reliabilities. The average number of recorded daughters per sire by lactations were 140.57, 94.24, 55.14, 29.20 and 14.06 from the first to fifth lactation, respectively. However, the average EDC per sire by lactation using the five lactation multiple trait model was 113.49, 89.28, 73.56, 54.02 and 35.08 from the first to fifth lactation, respectively, while the decrease of EDC in late lactations was comparably lower than the average number of recorded daughters per sire. These findings indicate that the availability of daughters without late lactation records is increased by genetic correlation using the multiple trait model. Owing to the relatedness between the EDC and reliability of the estimated breeding value for sire, understanding the MTEDC algorithm and continuous monitoring of EDC is required for correct MACE application of the five lactation multiple trait model.

국가간 유전능력평가를 위하여 5산차 다형질 모형을 적용한 다형질유효 딸소 기여도를 추정하기 위하여 농협중앙회 젖소개량부에서 수집한 한국형 보증종모우 및 수입 씨수소 2,046두의 딸소에 대한 산유량 검정기록 및 관련된 혈통을 수집하였으며, 수집된 산유량 검정기록 중 산차는 5산차, 누적착유일은 75~307일로 제한하였고, 305일 보정유량이 15,000 kg이 넘는 기록은 국제평가기준에 맞추기 위하여 제거하여, 총 301,551두 딸소의 681,860개 기록을 이용하였다. EDC 계산을 위하여 모든 개체의 육종가 추정 신뢰도를 부모 육종가 평균 (Parents average), 개체의 기록(Yield deviation) 및 배우자의 신뢰도가 보정된 후손의 육종가 기여도(Progeny contribution) 부분으로 분리하였으며, 1~5산차 유생산 유전상관을 고려하여 다형질 유효 딸소 기여도를 추정하였다. 씨수소 2,046두의 유생산 기록을 가지는 딸소 두수의 산차별 평균은 1~5산에서 각 140.57, 94.24, 55.14, 29.20 및 14.06두로 나타났으며, 추정된 MTEDC는 113.49, 89.28, 73.56, 54.02 및 35.08로 나타나 3산 이후의 기록이 부족함에도 유전상관을 고려한 EDC 추정치는 높게 형성되어 검정자료의 활용도가 높아진 것을 확인하였다. 또한 EDC 계산은 국제유전능력평가 적용을 위한 필수항목으로 정확한 국제유전능력평가를 위해서는 관련 알고리즘에 대한 이해가 필요하며, 지속적인 EDC 검증 및 종모우당 딸소 검정 두수 증가 등의 노력이 필요하다고 사료된다.

Keywords

References

  1. Cho, K. H., Park, B. H., Choi, J. K., Choi, T. J., Choy, Y. H., Lee, S. S. and Cho, C. I. 2013a. Development of International Genetic Evaluation Models for Dairy Cattle. J. Anim. Sci. & Tech., 55(1) 1-6.
  2. Cho, C. I., Cho, K. H., Choy, Y. H., Choi, J. K., Choi, T. J., Park, B. H. and Lee, S. S. 2013b. Estimation of Genetic Parameters for Milk Production Traits in Holstein Dairy Cattle. J. Anim. Sci. & Tech. 55(1) 7-11.
  3. Fikse, W. F. and Banos, G. 2001. Weighting Factors of Sire Daughter Information in International Genetic Evaluations. J. Dairy Sci. 84:1759-1767. https://doi.org/10.3168/jds.S0022-0302(01)74611-5
  4. Harris, B. and Johnson D. 1998. Approximate Reliability of Genetic Evaluations Under an Animal Model. J. Dairy Sci. 81:2723-2728. https://doi.org/10.3168/jds.S0022-0302(98)75829-1
  5. Jamrozik, J., Schaeffer, L. R. and Jansen, G. B. 2000. Approximate Accuracies of Prediction from Random Regression Models. Livest. Prod. Sci. 66:85-92. https://doi.org/10.1016/S0301-6226(00)00158-5
  6. Liu, Z., Reinhardt, F. and Reents, R. 2001. The Effective Daughter Contribution Concept Applied to Multiple Trait Models For Approximating Reliability of Estimated Breeding Values. Interbull Bulletin 27, 41-47.
  7. Liu, Z., Reinhardt, F. and Reents, R. 2004. Derivation and Calculation of Approximate Reliabilities and Daughter Yield-Deviations of a Random Regression Test-Day Model for Genetic Evaluation of Dairy Cattle. J. Dairy Sci. 87:1896-1907. https://doi.org/10.3168/jds.S0022-0302(04)73348-2
  8. Schaeffer, L. R. 1994. Multiple-Country Comparison of Dairy Sires. J. Dairy Sci. 77:2671-2678. https://doi.org/10.3168/jds.S0022-0302(94)77209-X
  9. VanRaden, P. M. and Wiggans, G. R. 1991. Derivation, Calculation, and Use of National Animal Model Information. J. Dairy Sci. 74:2737-2746. https://doi.org/10.3168/jds.S0022-0302(91)78453-1
  10. VanRaden, P. M. 2001. Methods to Combine Estimated Breeding Values Obtained from Separate Sources. J. Dairy Sci. 84(E. Suppl.):E47-E55. https://doi.org/10.3168/jds.S0022-0302(01)70196-8
  11. Interbull. 2013. Interbull Routine Genetic Evaluation for Dairy Production Traits. http://www-interbull.slu.se/eval/framesida-prod.htm

Cited by

  1. Adjustment of heterogeneous variance by milk production level of dairy herd vol.25, pp.4, 2014, https://doi.org/10.7465/jkdi.2014.25.4.737