DOI QR코드

DOI QR Code

Effects of Exercise Training on the Relationship with Brain-derived Neurotrophic Factor Expression and Leptin mRNA Expression in Hypothalamus, Serum Leptin, and Anti-obesity in High-fat Diet-induced Obese Rats

고지방 식이 섭취로 유발된 비만 쥐의 시상하부 BDNF발현과 렙틴 mRNA 발현, 혈청 렙틴과 항비만과의 관계에 대한 운동트레이닝의 효과

  • Woo, Sang Heon (Laboratory of Exercise Biochemistry and Physiology, Dept. of Physical Education, Dong-A University) ;
  • Kang, Sunghwun (Laboratory of Exercise Biochemistry and Physiology, Dept. of Physical Education, Dong-A University) ;
  • Woo, Jinhee (Laboratory of Exercise Biochemistry and Physiology, Dept. of Physical Education, Dong-A University) ;
  • Shin, Ki Ok (Laboratory of Exercise Biochemistry and Physiology, Dept. of Physical Education, Dong-A University)
  • Received : 2013.05.21
  • Accepted : 2013.09.23
  • Published : 2013.10.31

Abstract

The purpose of this study is to examine how to relate with hypothalamus protein BDNF and mRNA leptin expression, and test the effect of exercise training upon anti-obesity in high-fat induced obese rats. Weight and plasma TC of the high-fat diet group (HF) significantly reduced in comparison to those in the high-fat diet and training group (HF-T), high-fat diet and normal diet group (HF-ND), and high-fat diet, training, and normal diet group (HF-ND+T) (P<0.05). Plasm TG of the HF group significantly decreased in comparison to the HF-ND+T group (P< 0.05). The plasma leptin level significantly reduced in the HF-T group in comparison to the HF group, in the HF-ND group compared to the HF-T group, and the HF-ND+T group in comparison to the HF-ND group (P<0.05, respectively). All groups were significantly increased in hypothalamus BDNF protein expression in comparison to the HF group. In hypothalamus leptin mRNA expression, the HF-T and HF-ND groups reduced, but the HF-NF+T group increased in comparison to the HF group. This result suggests that it shows the effect of exercise training upon anti-obesity in high-fat diet induced obese rats and the combined exercise and/or normal diet may affect the optimal obesity improvement and prevention in appetite and weight control.

본 연구의 목적은 고지방식으로 유도된 비만이 에너지 항상성 조절인자인 신경영양인자와 섭식조절 호르몬인 렙틴 mRNA 발현에 어떠한 관련성이 있는지를 규명하는 것과 비만 쥐의 시상하부 BDNF 발현과 렙틴 리셉터 mRNA 발현, 혈청 렙틴과 항비만과의 관계에 대한 운동트레이닝과 정상식이로의 전환에 대한 효과를 확인하고자 하였다. 그 결과 8주 후 비만 대조군(HF)에 비해 운동군(HFT), 정상식이군(HFND), 운동 및 정상식이 트레이닝군(HFNDT)에서 각각 유의한 체중 및 혈중 TC 감소를 보였다(P<0.05). 혈중 TG에서는 HF군에 비해 HFNDT군에서 유의한 감소를 보였다(P<0.05). 혈중 렙틴은 HF군에 비해 HFT군에서 유의한 감소를(P<0.05), HFT군에 비해 HFND군에서 유의한 감소를 보였으며(P<0.05), HFND군에 비해 HFNDT군에서 유의한 감소를 나타냈다(P<0.05). 시상하부 BDNF 단백질 발현은 HF군에 비해 모든 군에서 유의한 증가를 보였다(P<0.05). 시상하부 렙틴 리셉터 mRNA는 HF군에 비해 HFT와 HFND군에서 약간의 감소를, HFNDT군에서는 증가를 나타내었다. 이상의 결과는 고지방식이로 유도된 비만쥐에 대한 운동트레이닝은 항비만 효과가 있는 것으로 나타났으며, 운동 또는 정상식이의 병행은 식욕과 체중조절에 최적의 비만예방 및 개선효과가 있을 것으로 사료된다.

Keywords

References

  1. Rajala MW, Scherer PE. 2003. Minireview: The adipocyte-at the crossroads of energy homeostasis, inflammation, and atherosclerosis. Endocrinology 144: 3765-3773. https://doi.org/10.1210/en.2003-0580
  2. Chen L, Liu L, Luo Y, Huang S. 2008. MAPK and mTOR pathways are involved in cadmium-induced neuronal apoptosis. J Neurochem 105: 251-261. https://doi.org/10.1111/j.1471-4159.2007.05133.x
  3. Drenick EJ, Bale GS, Seltzer F, Johnson DG. 1980. Excessive mortality and causes of death in morbidly obese men. JAMA 243: 443-445. https://doi.org/10.1001/jama.1980.03300310031018
  4. Garrison R, Feinleib M, Castelli WP, McNamara PM. 1983. Cigarette smoking as a confounder of the relationship between relative weight and long-term mortality. The Framingham Heart Study. JAMA 249: 2199-2203. https://doi.org/10.1001/jama.1983.03330400045023
  5. Kannel WB, McGee DL, Schatzkin A. 1984. An epidemioligical perspective of sudden death. 26-year follow-up in the Framingham Study. Drugs 28: 1-16.
  6. Gordon T, Kannel WB. 1982. Multiple risk functions for predicting coronary heart disease: the concept, accuracy, and application. Am Heart J 103: 1031-1039. https://doi.org/10.1016/0002-8703(82)90567-1
  7. Hubert IF, Lunel F, Cadranel JF, Oberti F, Cales P. 1993. Treatment of chronic hepatitis C with amantadine. Am J Gastroenterol 94: 2316-2317.
  8. Molteni R, Barnard RJ, Ying Z, Roberts CK, Gomez-Pinilla F. 2002. A high-fat, refined sugar diet reduces hipocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience 112: 803-814. https://doi.org/10.1016/S0306-4522(02)00123-9
  9. Unger TJ, Calderon GA, Bradley LC, Sena-Esteves M, Rios M. 2007. Selective deletion of Bdnf in the ventromedial and dorsomedial hypothalamus of adult mice results in hyperphagic behavior and obesity. J Neurosci 27: 14265-14274. https://doi.org/10.1523/JNEUROSCI.3308-07.2007
  10. Wang C, Bomberg E, Levine A, Billington C, Kotz CM. 2007. Brain-derived neurotrophic factor in the ventromedial nucleus of the hypothalamus reduces energy intake. Am J Physiol Regul Integr Comp Physiol 293: R1037-R1045. https://doi.org/10.1152/ajpregu.00125.2007
  11. Neeper SA, Gomez-Pinilla F, Choi J, Cotman CW. 1996. Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res 726: 49-56. https://doi.org/10.1016/0006-8993(96)00273-9
  12. Levinger I, Goodman C, Matthews V, Hare DL, Jerums G, Garnham A, Selig S. 2008. BDNF, metabolic risk factors, and resistance training in middle-aged individuals. Med Sci Sports Exerc 40: 535-541. https://doi.org/10.1249/MSS.0b013e31815dd057
  13. Lee SH. 2002. Effect of long-term swimming exercise of proteins for BDNF and immediate-early gene in rat brain. The Korean Journal of Physical Education 42: 799-807.
  14. Lee JK, An EN. 2008. The effect of regular exercise and taurine supplementation on nNOS, NGF and BDNF of hippocampus in seizure induced mice model. The Korean Journal of Physical Education 47: 471-480.
  15. Cotman CW, Engesser-Cesar C. 2002. Exercise enhances and protects brain function. Exerc Sport Sci Rev 30: 75-79. https://doi.org/10.1097/00003677-200204000-00006
  16. Wirth MJ, Brun A, Grabert J, Patz S, Wahle P. 2003. Accelerated dendritic development of rat cortical pyramidal cells and interneurons after biolistic transfection with BDNF and NT4/5. Development 130: 5827-5838. https://doi.org/10.1242/dev.00826
  17. Han JC, Liu QR, Jones M, Levinn RL, Menzie CM, Jefferson-George KS, Adler-Wailes DC, Sanford EL, Lacbawan FL, Uhl GR, Rennert OM, Yanovski JA. 2008. Brain-derived neurotrophic factor and obesity in the WAGR syndrome. N Engl J Med 359: 918-927. https://doi.org/10.1056/NEJMoa0801119
  18. Barzilai N, Wang J, Massilon D, Vuguin P, Hawkins M, Rossetti L. 1997. Leptin selectively decreases visceral adiposity and enhances insulin action. J Clin Invest 100: 3105-3110. https://doi.org/10.1172/JCI119865
  19. Buettner R, Newgard CB, Rhodes CJ, O'Doherty RM. 2000. Correction of diet-induced hyperglycemia, hyperinsulinemia, and skeletal muscle insulin resistance by moderate hyperleptinemia. Am J Physiol Endocrinol Metab 278: E563-E569. https://doi.org/10.1152/ajpendo.2000.278.3.E563
  20. Friedman JM, Halaas JL. 1998. Leptin and the regulation of body weight in mammals. Nature 395: 763-770. https://doi.org/10.1038/27376
  21. O'Doherty RM, Anderson PR, Zhao AZ, Bornfeldt KE, Newgard CB. 1999. Sparing effect of leptin on liver glycogen stores in rats during the fed-to-fasted transition. Am J Physiol 277: E544-E550.
  22. Zhou YT, Shimabukuro M, Koyama K, Lee Y, Wang MY, Trieu F, Newgard CB, Unger RH. 1997. Induction by leptin of uncoupling protein-2 and enzymes of fatty acid oxidation. Proc Natl Acad Sci U S A 94: 6386-6390. https://doi.org/10.1073/pnas.94.12.6386
  23. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, McKee LJ, Bauer TL, Caro JF. 1996. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 334: 292-295. https://doi.org/10.1056/NEJM199602013340503
  24. Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y, Fei H, Kim S, Lallone R, Ranganathan S, Kern PA, Friedman JM. 1995. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nature Med 1: 1155-1161. https://doi.org/10.1038/nm1195-1155
  25. Mazzeo RS, Brooks GA, Horvath SM. 1984. Effects of age on metabolic responses to endurance training in rats. J Appl Physiol Respir Environ Exerc Physiol 57: 1369-1374.
  26. Scarpace PJ, Zhang Y. 2009. Leptin resistance: a predisposing factor for diet-induced obesity. Am J Physiol Regul Integr Comp Physiol 296: R493-R500. https://doi.org/10.1152/ajpregu.90669.2008
  27. Patterson CM, Dunn-Meynell AA, Levin BF. 2008. Three weeks of early-onset exercise prolongs obesity resistance in DIO rats after exercise cessation. Am J Physiol Regul Integr Comp Physiol 294: R290-R301. https://doi.org/10.1152/ajpregu.00661.2007
  28. Levin BE. 2007. Neurotrophism and energy homeostasis: perfect together. Am J Physiol Regul Integr Comp Physiol 293: R988-R991. https://doi.org/10.1152/ajpregu.00434.2007
  29. Molteni R, Wu A, Vaynman S, Ying Z, Barnard RJ, Gomez-Pinilla F. 2004. Exercise reverses the harmful effects of consumption of a high-fat diet on synaptic and behavioral plasticity associated to the action of brain-derived neurotrophic factor. Neuroscience 123: 429-440. https://doi.org/10.1016/j.neuroscience.2003.09.020
  30. Sahu A, Nguyen L, O'Doherty RM. 2002. Nutritional regulation of hypothalamic leptin receptor gene expression is defective in diet-induced obesity. J Neuroendocrinol 14: 887-893. https://doi.org/10.1046/j.1365-2826.2002.00856.x

Cited by

  1. The Effects of Aerobic Exercise Training on Blood Lipid Profiles, Fibrinolytic Activities, and Nitric Oxide Levels in High-fat-diet induced Rats vol.25, pp.12, 2015, https://doi.org/10.5352/JLS.2015.25.12.1432
  2. Health Benefits of Endurance Training: Implications of the Brain-Derived Neurotrophic Factor-A Systematic Review vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/5413067