DOI QR코드

DOI QR Code

Identification of Pre-pasteurization or Pre-irradiation Treatment in Frozen Crushed Garlic Commercially Available in Korean Market

시판 유통 중인 냉동 다진 마늘의 사전 살균 및 조사처리 여부 판별 모니터링

  • Kim, Hyo-Young (School of Food Science & Biotechnology, Kyungpook National University) ;
  • Ahn, Jae-Jun (School of Food Science & Biotechnology, Kyungpook National University) ;
  • Kim, Gui-Ran (School of Food Science & Biotechnology, Kyungpook National University) ;
  • Jeong, Jin-Hwa (School of Food Science & Biotechnology, Kyungpook National University) ;
  • Park, Ki-Hwan (School of Food Science & Technology and Research Group on Food Safety Control against Climate Change, Chung-Ang University) ;
  • Kwon, Joong-Ho (School of Food Science & Biotechnology, Kyungpook National University)
  • 김효영 (경북대학교 식품공학부) ;
  • 안재준 (경북대학교 식품공학부) ;
  • 김귀란 (경북대학교 식품공학부) ;
  • 정진화 (경북대학교 식품공학부) ;
  • 박기환 (중앙대학교 식품공학부.기후변화대응식품안전관리연구사업단) ;
  • 권중호 (경북대학교 식품공학부)
  • Received : 2013.06.29
  • Accepted : 2013.09.17
  • Published : 2013.10.31

Abstract

Five different chopped frozen garlic products samples, three from Chinese and two from Korean origins being commercially available products in Korean market, were used to confirm their pre-pasteurization or pre-irradiation status by screening (direct epifluorescent filter technique/aerobic plate counts, DEFT/APC; electronic nose, E-nose; photostimulated luminescence, PSL) and identification (thermoluminescence, TL; electron spin resonance, ESR) techniques. Some parts of samples were gamma-irradiated at 1 kGy to be used as control samples in irradiation history identification. DEFT/APC and e-nose successfully showed distinct results between the domestic and imported samples. The PSL photon counts of all the unknown samples were less than 700 (negative), while most of 1 kGy-irradiated samples gave PSL photon counts more than 5,000 (positive). The domestic unknown samples produced the TL glow peaks after $300^{\circ}C$ or more, whereas the imported samples showed TL peaks at the range of $240{\sim}250^{\circ}C$. A clear TL glow peak was obtained from all irradiated samples at $150{\sim}250^{\circ}C$. The unknown samples of Chinese origin gave radiation-specific cellulose ESR signal that was not shown by domestic samples. A multiple step of applying the physical analytical methods is recommended for the effective identification of irradiation status on chopped frozen garlic products.

시판 냉동 다진 마늘 5종(중국산 3종, 국산 2종)을 대상으로 DEFT/APC, 전자코 분석, PSL, TL 및 ESR 분석을 이용하여 사전살균처리 및 조사 여부를 모니터링 하였다. DEFT/APC 분석 결과 중국산 시료에서 DEFT값(생균수+사균수)은 7.9~8.3 log CFU/g으로 높은 값을 나타내었으나, APC(생균수)는 4.2~4.8 log CFU/g으로 낮은 값을 나타내어 사전살균처리 가능성이 확인되었다. 그러나 국산 시료는 DEFT값과 APC 값의 차이가 크게 나타나지 않아 사전살균처리되지 않은 것으로 판단되었다. 전자코를 이용한 조사여부 스크리닝 결과, 중국산 시료는 미지시료와 1 kGy 조사시료간에 있어서 차이가 불분명하여 조사여부 확인이 어려운 반면, 국산 시료는 그 차이가 명확히 구분되어서 사전 조사처리 되지 않았음을 확인할 수 있었다. PSL 분석 결과, 미지시료 5종 모두 700 이하의 PCs(-)을 나타내었으며, 1 kGy의 선량으로 재조사하여 얻은 PSL ratio 역시 10배 이상으로 나타나, 모든 시료가 사전 조사되지 않은 시료로 확인되었다. 한편 TL 분석에서 $TL_1$ 발광곡선은 국산 2종의 미지시료는 $300^{\circ}C$ 이상에서, 중국산 3종은 $240{\sim}250^{\circ}C$에서 약한 발광곡선을 나타내었다. 이상의 결과를 검증하기 위하여 재조사(1 kGy)에 의한 $TL_2$ 발광곡선을 측정한 결과, 국산 및 중국산 모두 $150{\sim}250^{\circ}C$에서 발광피크를 나타내면서 TL ratio($TL_1/TL_2$)가 0.1 이하로 비 조사(negative)로 나타났다. 그러나 중국산 3종의 $TL_1$ 발광곡선의 온도범위를 고려해 본다면 조사처리의 가능성이 높게 나타났다. 그리하여 ESR 분석을 실시한 결과, 중국산 3종 시료는 미지시료 및 1 kGy 조사시료 모두 방사선 유래의 특이적인 cellulose signal이 관찰되어 $TL_1$ 결과를 잘 뒷받침하였다. 이와 같이 냉동 다진 마늘의 조사여부를 효과적으로 확인하기 위해서는 물리적 분석법의 다중적 활용이 필요한 것으로 나타났다.

Keywords

References

  1. Shin DB, Lee YC, Kim JH. 2000. Changes in quality of garlic during frozen storage. Korean J Food Sci Technol 32: 102-110.
  2. Hwang JB, Shin DB, Lee YC. 2003. The inhibition of green discoloration in garlic by conditioning. Korean J Food Sci Technol 35: 1007-1016.
  3. Lee JM, Cha TY, Kim SH, Kwon TK, Kwon JH, Lee SH. 2007. Optimization of hot-water extraction condition of garlic using a response surface methodology. Korean J Food Preserv 14: 385-393.
  4. AT. 2013. Korea Agro-fisheries and Food Trade Corporation. Available from http://www.kati.net/sta/staRes1.do?menuCode=120&parentCode=1&url=%2Fsta%2FstaRes1 &topMenuCode=120.
  5. KFDA. 2012. Food Code. Korea Food and Drug Administration, Seoul, Korea. 3-1-2.
  6. Jeong MS, Ahn JJ, Akram K, Kim GR, Kim HK, Kwon JH. 2012. Monitoring of commercial red pepper powders for their irradiation status. Korean J Food Sci Technol 44: 673-679. https://doi.org/10.9721/KJFST.2012.44.6.673
  7. Kume T, Furuta M, Todoriki S, Uenoyama N, Kobayashi Y. 2009. Status of food irradiation in the world. Radiat Phys Chem 78: 222-226. https://doi.org/10.1016/j.radphyschem.2008.09.009
  8. KFDA. 2012. Food Code. Korea Food and Drug Administration, Seoul, Korea. 2-1-11, 2-1-12.
  9. Kwon JH, Chung HW, Kim BK, Ahn JJ, Kim GR, Jo DJ, An KA. 2011. Research and application of identification methods for irradiated foods. Safe Food 6: 11-27.
  10. KFDA. 2012. Food Code. Korea Food and Drug Administration, Seoul, Korea. 10-8-40-10-8-60.
  11. Kwon JH, Ahn JJ, Akram K, Son IJ, Lee SO. 2013. Characterization of radiation-induced luminescence properties and free radicals for the identification of different gamma-irradiated teas. Anal Bioanal Chem 405: 4225-4234. https://doi.org/10.1007/s00216-013-6849-6
  12. Kim BK, Kwon JH. 2004. Identification characteristics of irradiated dried red pepper during storage by analysis of thermoluminescence, DNA comet, and DEFT/APC. Korean J Food Sci Technol 36: 851-856.
  13. Wirtanen G, Sjoberg AM. 1993. A microbiological method (DEFT/APC) for the identification of irradiated spices and seafood. In Workshop on Recent Advances on Detection of Irradiated Food. Leonardi M, Raffi JJ, Belliardo JJ, eds. Commission of the European Communities, Luxembourg. p 25-34.
  14. Ahn JJ, Akram K, Kwak JY, Jeong MS, Kwon JH. 2013. Reliable screening of various foodstuffs with respect to their irradiation status: a comparative study of different analytical techniques. Radiat Phys Chem 91: 186-192. https://doi.org/10.1016/j.radphyschem.2013.05.020
  15. Yordanov ND, Aleksieva K, Dimitrova A, Georgieva L, Tzvetkova E. 2006. Multifrequency EPR study on freezedried fruits before and after X-ray irradiation. Radiat Phys Chem 75: 1069-1074. https://doi.org/10.1016/j.radphyschem.2006.03.072
  16. Ahn JJ, Akram K, Jo D, Kwon JH. 2012. Investigation of different factors affecting the electron spin resonance-based characterization of gamma-irradiated fresh, white, and red ginseng. J Ginseng Res 36: 308-313. https://doi.org/10.5142/jgr.2012.36.3.308
  17. EN 1787. 2000. Foodstuffs-detection of irradiated food containing cellulose by ESR spectroscopy. European Committee of Standardization (CEN), Brussels, Belgium.
  18. Oh KN, Lee SY, Yang JS. 2002. Detection of gamma-irradiated grains by using DEFT/APC method. Korean J Food Sci Technol 34: 380-384.
  19. Hammerton KM, Banos C. 1996. Detection of irradiated spices with a microbiological method DEFT/APC method. In Detection Methods for Irradiated Food: Current Status. The Royal Society of Chemistry, Cambridge, UK. p 392-396.
  20. Boisen F. 1993. Detection of irradiated spices using a combined DEFT/APC method. Workshop on Recent Advances on Detection of Irradiated Food. Commission of the European Communities Luxembourg, Belgium. p 49-54.
  21. Gardner JW. 1996. An introduction to electronic nose technology. Neotronics Scientific Ltd., Essex, UK. p 1-2.
  22. Yang JS. 1997. Identification of irradiated foods in general foods. Food Sci Ind 30: 121-130.
  23. Noh BS. 2005. Analysis of volatile compounds using electronic nose and its application in food industry. Korean J Food Sci Technol 37: 1048-1064.
  24. EN 13751. 2009. Foodstuffs-detection of irradiated food using photostimulated luminescence. European Committee of Standardization (CEN), Brussels, Belgium.
  25. EN 1788. 2001. Foodstuffs-thermoluminescence detection of irradiated food from which silicate minerals can be isolated. European Committee of Standardization (CEN), Brussels, Belgium.
  26. Ahn JJ, Akram K, Lee J, Kim KS, Kwon JH. 2012. Identification of a gamma-irradiated ingredient (garlic powder) in Korean barbecue sauce by thermoluminescence analysis. J Food Sci 77: C476-480. https://doi.org/10.1111/j.1750-3841.2011.02614.x
  27. Ahn JJ, Akram K, Kwak JY, Jeong MS, Jang YD, Kwon JH. 2012. Radiation-induced thermoluminescence characteristics of feldspar upon different heat and microwave treatments. J Lumin 132: 1964-1968. https://doi.org/10.1016/j.jlumin.2012.03.034
  28. Ahn JJ, Kim GR, Akram K, Kim JH, Kwon JH. 2012. Change in thermoluminescence properties of minerals separated from irradiated potatoes and garlic during long-term storage under different light conditions. Eur Food Res Technol 235: 75-82. https://doi.org/10.1007/s00217-012-1740-9
  29. Raffi JJ, Agnel JPL, Buscarlet LA, Martin CC. 1988. Electron spin resonance identification of irradiated strawberries. J Chem Soc Faraday T 1 84: 3359-3362. https://doi.org/10.1039/f19888403359
  30. Kwon JH, Kim MY, Kim BK, Lee JE, Kim DH, Lee JW, Byun MW, Lee CB. 2006. Identification characteristics of irradiated dried-spicy vegetables by analyzing photostimulated luminescence (PSL), thermoluminescence (TL) and electron spin resonance (ESR). Korean J Food Preserv 13: 50-54.
  31. Ahn JJ, Akram K, Kim HK, Kwon JH. 2013. Electron spin resonance spectroscopy for the identification of irradiated food with complex ESR signals. Food Anal Method 6: 301-308. https://doi.org/10.1007/s12161-012-9440-4
  32. Lee J, Kausar T, Kim BK, Kwon JH. 2008. Detection of gamma-irradiated sesame seeds before and after roasting by analyzing photostimulated luminescence, thermoluminescence, and electron spin resonance. J Agric Food Chem 56: 7184-7188. https://doi.org/10.1021/jf801416r

Cited by

  1. 냉동조건에 따른 편마늘의 냉동저장 중 품질변화 vol.24, pp.6, 2013, https://doi.org/10.11002/kjfp.2017.24.6.746
  2. Nontargeted Analytical Methods as a Powerful Tool for the Authentication of Spices and Herbs: A Review vol.18, pp.3, 2013, https://doi.org/10.1111/1541-4337.12436