DOI QR코드

DOI QR Code

Tyrosinase Inhibitory Activity and Neuronal Cell Protection of Hydrothermal Extracts from Watermelons

수박 열수 추출물의 Tyrosinase 저해능과 신경세포 보호효과

  • Heo, Da-Jeong (Dept. of Food Science and Biotechnology, Kyungnam University) ;
  • Kim, Su-Jung (Dept. of Food Science and Biotechnology, Kyungnam University) ;
  • Choi, Ae-Ran (Dept. of Food Science and Biotechnology, Kyungnam University) ;
  • Park, Hae-Ryong (Dept. of Food Science and Biotechnology, Kyungnam University) ;
  • Lee, Seung-Cheol (Dept. of Food Science and Biotechnology, Kyungnam University)
  • 허다정 (경남대학교 식품생명학과) ;
  • 김수정 (경남대학교 식품생명학과) ;
  • 최애란 (경남대학교 식품생명학과) ;
  • 박해룡 (경남대학교 식품생명학과) ;
  • 이승철 (경남대학교 식품생명학과)
  • Received : 2013.06.04
  • Accepted : 2013.07.27
  • Published : 2013.10.31

Abstract

In our study, each part (flesh, white rind, and green rind) of watermelon was extracted using hydrothermal extraction method at temperatures ranging from 100 to $300^{\circ}C$ at the intervals of 10, 30, and 60 min. We found that hydrothermal treatment has a significant bearing not only on tyrosinase inhibitory activity but also on neuronal cell protection of watermelon parts. The peak tyrosinase inhibitory activity (about 93%) was observed in both the flesh and green rind extracts at $300^{\circ}C$ for 60 min. In addition, we observed that hydrothermal extracts of watermelon parts at $300^{\circ}C$ for 60 min also evidenced significant protection effect for neuronal cell against $H_2O_2$ in a concentrationdependent manner. The results of this study confirm that hydrothermal treatment may be an efficient processing method for the purpose of obtaining potent bioactive substances from watermelon.

수박을 과육, 외피, 내피로 나누어 $100{\sim}300^{\circ}C$에서 10, 30, 60분간 열수 추출하여 tyrosinase 저해활성과 신경세포 보호효과를 조사하였다. Tyrosinase 저해활성은 온도가 높을수록 시간이 증가할수록 높아졌으며, 과육과 외피에서 $300^{\circ}C$, 60분 처리했을 때, 약 93%로 가장 높은 저해활성을 보였다. $300^{\circ}C$에서 60분간 열수 추출한 수박 추출물을 PC12 세포주에 농도별로(10, 50, 100, 500 ${\mu}g/mL$) 처리하여 신경세포 보호효과를 확인하였다. 열수 추출을 하지 않은 수박 부위별 추출물은 $H_2O_2$ 처리군과 세포생존율의 유의적 차이가 없었으며 이를 통해 신경세포 보호효과가 없음을 확인하였으나, 열수 추출물들은 $H_2O_2$ 단독 처리군에 비해 세포생존율이 증가하였다. 이상의 결과들은 열수 처리가 수박에 함유된 유용 물질들의 추출에 매우 유용한 공정임을 시사한다.

Keywords

References

  1. Park SH, Cui HS. 2006. Characteristics and nutritional approaching of Sun-Jup in oriental medicinal diet therapy. Korean J Oriental Physiol Pathol 20: 753-758.
  2. Tlili I, Hdider C, Lenucci MS, Riadh I, Jebari H, Dalessandro G. 2011. Bioactive compounds and antioxidant activities of different watermelon (Citrullus lanatus (Thunb.) Mansfeld) cultivars as affected by fruit sampling area. J Food Compos Anal 24: 307-314. https://doi.org/10.1016/j.jfca.2010.06.005
  3. Oms-Oliu G, Odriozola-Serrano I, Soliva-Fortuny R, Martin-Belloso O. 2009. Effects of high-intensity pulsed electric field processing conditions on lycopene, vitamin C and antioxidant capacity of watermelon juice. Food Chem 115: 1312-1319. https://doi.org/10.1016/j.foodchem.2009.01.049
  4. Hong SP, Lim JY, Jeong EJ, Shin DH. 2008. Physicochemical properties of watermelon according to cultivars. Korean J Food Preserv 15: 706-710.
  5. Park CS, Kim ML. 2010. Preparation and characterization of watermelon wine. Korean J Food Preserv 17: 547-554.
  6. Sohn JY, Ban SC, Shin JS, Hong SH. 1996. Distribution of free sugars in the various portions of watermelon (Citrullus vulgaris L.) and muskmelon (Cucumis melo var. reticulatus Naud.). Agric Chem Biotechnol 39: 200-205.
  7. Kim SL, Kim WJ, Lee SY, Byun SM. 1984. Alcohol fermentation of Korean watermelon juice. J Korean Agric Chem Soc 27: 139-145.
  8. Katherine LS, Edgar CC, Jerry WK, Luke RH, Julie CD. 2008. Extraction conditions affecting supercritical fluid extraction (SFE) of lycopene from watermelon. Bioresour Technol 99: 7835-7841. https://doi.org/10.1016/j.biortech.2008.01.082
  9. Liu Y, Hu X, Zhao X, Song H. 2012. Combined effect of high pressure carbon dioxide and mild heat treatment on overall quality parameters of watermelon juice. Innovative Food Sci Emerging Technol 13: 112-119. https://doi.org/10.1016/j.ifset.2011.11.001
  10. Rawson A, Tiwari BK, Patras A, Brunton N, Brennan C, Cullen PJ, O'Donnell C. 2011. Effect of thermosonication on bioactive compounds in watermelon juice. Food Res Int 44: 1168-1173. https://doi.org/10.1016/j.foodres.2010.07.005
  11. Huie CW. 2002. A review of modern sample-preparation techniques for the extraction and analysis of medicinal plants. Anal Bioanal Chem 373: 23-30. https://doi.org/10.1007/s00216-002-1265-3
  12. Hassas-Roudsari M, Chang PR, Pegg RB, Tyler RT. 2009. Antioxidant capacity of bioactives extracted from canola meal by subcritical water, ethanolic and hot water extraction. Food Chem 114: 717-726. https://doi.org/10.1016/j.foodchem.2008.09.097
  13. Ju ZY, Howard LR. 2005. Subcritical water and sulfured water extraction of anthocyanins and other phenolics from dried red grape skin. J Food Sci 70: S270-S276.
  14. Wiboonsirikul J, Hata S, Tsuno T, Kimura Y, Adachi S. 2007. Production of functional substances from black rice bran by its treatment in subcritical water. LWT-Food Sci Technol 40: 1732-1740. https://doi.org/10.1016/j.lwt.2007.01.003
  15. Kim SJ, Matsushita Y, Fukushima K, Aoki D, Yagami S, Yuk HG, Lee SC. 2013. Antioxidant activity of a hydrothermal extract from watermelons. LWT-Food Sci Technol in submission.
  16. Vanni A, Gastaldi D, Giunata G. 1990. Kinetic investigations on the double enzymatic activity of the tyrosinase mushroom. Ann Chim 80: 35-60.
  17. Cha JY, Yang HJ, Jeong JJ, Seo WS, Park JS, Ok M, Cho YS. 2010. Tyrosinase inhibition activity and antioxidant capacity by fermented products of some medicinal plants. J Life Sci 20: 940-947. https://doi.org/10.5352/JLS.2010.20.6.940
  18. Han JY, Sung JH, Kim DJ, Jeong HS, Lee JS. 2008. Inhibitory effect of methanol extract and its fractions from grape seeds on mushroom tyrosinase. J Korean Soc Food Sci Nutr 37: 1679-1683. https://doi.org/10.3746/jkfn.2008.37.12.1679
  19. Jo EK, Lee SC. 2011. Antioxidant and acetylcholinesterase inhibitory activities of subcritical water extracts from Houttuynia cordata Thunb. J Korean Soc Food Sci Nutr 40: 1391-1396. https://doi.org/10.3746/jkfn.2011.40.10.1391
  20. Seo HK, Lee SC. 2010. Antioxidant activity of subcritical water extracts from Chaga mushroom (Inonotus obliquus). Sep Sci Technol 45: 198-203. https://doi.org/10.1080/01496390903423899
  21. Kim SS, Park RY, Jeon HJ, Kwon YS, Chun W. 2005. Neuroprotective effects of 3,5-dicaffeoylquinic acid on hydrogen peroxide-induced cell death in SH-SY5Y cells. Phytother Res 19: 243-245. https://doi.org/10.1002/ptr.1652
  22. Kwak JH, Jo YN, Jeong JH, Kim HJ, Jin SI, Choi SG, Heo HJ. 2013. Protective effects of black soybean seed coat extracts against oxidative stress-induced neurotoxicity. Korean J Food Sci Technol 45: 257-261. https://doi.org/10.9721/KJFST.2013.45.2.257

Cited by

  1. Comparison of Antioxidant and Nitrite Scavenging Activities of Different Colored Kiwis Cultivated in Korea vol.30, pp.2, 2015, https://doi.org/10.7318/KJFC/2015.30.2.220
  2. Storage characteristics of watermelon before and after removing the T-shaped stalk vol.22, pp.2, 2015, https://doi.org/10.11002/kjfp.2015.22.2.159
  3. 문헌 고찰을 통해 본 영산재(靈山齋)에 등장한 여름 과실(果實)의 생리활성 효과 규명(I) vol.21, pp.9, 2013, https://doi.org/10.5762/kais.2020.21.9.269