DOI QR코드

DOI QR Code

Improvement of Hydrogen Storage Properties of Mg by Addition of NbF5 via Mechanical Milling under H2

  • Kwak, Young Jun (Department of Materials Engineering, Graduate School, Chonbuk National University) ;
  • Song, Jiyoung (Woodbridge High School) ;
  • Mumm, Daniel R. (Department of Chemical Engineering and Materials Science, University of California Irvine)
  • Received : 2013.08.18
  • Accepted : 2013.09.13
  • Published : 2013.10.27

Abstract

A 90 wt% Mg-10 wt% $NbF_5$ sample was prepared by mechanical milling under $H_2$ (reactive mechanical grinding). Its hydriding and dehydriding properties were then examined. Activation of the 90 wt% Mg-10 wt% $NbF_5$ sample was not required. At n=1, the sample absorbed 3.11 wt% H for 2.5 min, 3.55 wt% H for 5 min, 3.86 wt% H for 10 min, and 4.23 wt% H for 30 min at 593K under 12 bar $H_2$. At n=1, the sample desorbed 0.17 wt% H for 5 min, 0.74 wt% H for 10 min, 2.03 wt% H for 30 min, and 2.81 wt% H for 60 min at 593K under 1.0 bar $H_2$. The XRD pattern of the 90 wt% Mg-10 wt% $NbF_5$ after reactive mechanical grinding showed Mg, ${\beta}-MgH_2$ and small amounts of ${\gamma}-MgH_2$, $NbH_2$, $MgF_2$ and $NbF_3$. The XRD pattern of the 90 wt% Mg-10 wt% $NbF_5$ dehydrided at n=3 revealed Mg, ${\beta}-MgH_2$, a small amount of MgO and very small amounts of $MgH_2$ and $NbH_2$. The 90 wt% Mg-10 wt% $NbF_5$ had a higher initial hydriding rate and a larger quantity of hydrogen absorbed for 60 min than the 90 wt% Mg-10 wt% MnO and the 90 wt% Mg-10 wt% $Fe_2O_3$, which were reported to have quite high hydriding rates and/or dehydriding rates. The 90 wt% Mg-10 wt% $NbF_5$ had a higher initial dehydriding rate (after an incubation period) and a larger quantity of hydrogen desorbed for 60 min than the 90 wt% Mg-10 wt% MnO and the 90 wt% Mg-10 wt% $Fe_2O_3$.

Keywords

References

  1. Y. J. Kwak, H. R. Park, and M. Y. Song, Kor. J. Met. Mater., 50(11), 855 (2012).
  2. S. H. Hong, S. N. Kwon, and M. Y. Song, Kor, J. Met. Mater., 49(4), 298 (2011).
  3. K. I. Kim and T. W. Hong, Kor. J. Met. Mater., 49(3), 264 (2011). https://doi.org/10.3365/KJMM.2011.49.3.264
  4. J. J. Reilly and R. H. Wiswall, Inorg. Chem., 6(12), 2220 (1967). https://doi.org/10.1021/ic50058a020
  5. J. J. Reilly and R. H. Wiswall Jr, Inorg. Chem., 7(11), 2254 (1968). https://doi.org/10.1021/ic50069a016
  6. E. Akiba, K. Nomura, S. Ono and S. Suda, Int. J. Hydrogen Energy, 7(10), 787 (1982). https://doi.org/10.1016/0360-3199(82)90069-6
  7. Z. Li, X. Liu, L. Jiang, S. Wang, Int. J. Hydrogen Energy, 32(12), 1869 (2007). https://doi.org/10.1016/j.ijhydene.2006.09.022
  8. J. M. Boulet and N. Gerard, J. Less-Common Met., 89, 151 (1983). https://doi.org/10.1016/0022-5088(83)90261-8
  9. M. Lucaci, A. R. Biris, R. L. Orban, G. B. Sbarcea, V. Tsakiris, J. Alloys Compd., 488(1), 163 (2009). https://doi.org/10.1016/j.jallcom.2009.07.037
  10. Z. Li, X. Liu, Z. Huang, L. Jiang, S. Wang, Rare Metals, 25(6)(Supplement 1), 247 (2006). https://doi.org/10.1016/S1001-0521(07)60083-7
  11. S. Aminorroaya, A. Ranjbar, Y. H. Cho, H. K. Liu, A. K. Dahle, Int. J. Hydrogen Energy, 36(1), 571 (2011). https://doi.org/10.1016/j.ijhydene.2010.08.103
  12. Y. H. Cho, S. Aminorroaya, H. K. Liu, A. K. Dahle, Int. J. Hydrogen Energy, 36(8), 4984 (2011). https://doi.org/10.1016/j.ijhydene.2010.12.090
  13. C. Milanese, A. Girella, G. Bruni, P. Cofrancesco, V. Berbenni, P. Matteazzi, A. Marini, Intermetallics, 18(2), 203 (2010). https://doi.org/10.1016/j.intermet.2009.07.012
  14. B. Tanguy, J. L. Soubeyroux, M. Pezat, J. Portier and P. Hagenmuller, Mater. Res. Bull., 11, 1441 (1976). https://doi.org/10.1016/0025-5408(76)90057-X
  15. F. G. Eisenberg, D. A. Zagnoli and J. J. Sheridan III, J. Less-Common Met., 74, 323 (1980). https://doi.org/10.1016/0022-5088(80)90170-8
  16. A. R. Yavari, A. LeMoulec, F. R. de Castro, S. Deledda, O. Friedrichs, W. J. Botta, G. Vaughan, T. Klassen, A. Fernandez, A. Kvick, Scripta Materialia, 52(8), 719 (2005). https://doi.org/10.1016/j.scriptamat.2004.12.020
  17. S. A. Jin, J. P. Ahn, J. H. Shim, Y. W. Cho, K. W. Yi, J. Power Sources, 172, 859 (2007). https://doi.org/10.1016/j.jpowsour.2007.04.090
  18. I. E. Malka, T. Czujko, J. Bystrzycki, Int. J. Hydrogen Energy, 35, 1706 (2010). https://doi.org/10.1016/j.ijhydene.2009.12.024
  19. I. E. Malka, A. B achowski, K. Ruebenbauer, J. Przewoznik, J. Zukrowski, T. Czujko, J. Bystrzycki, J. Alloys Compd., 509, 5368 (2011). https://doi.org/10.1016/j.jallcom.2011.02.049
  20. M. Y. Song, S. H. Baek, J. -L. Bobet, J. Song and S. H. Hong, Int. J. Hydrogen Energy, 35, 10366 (2010). https://doi.org/10.1016/j.ijhydene.2010.07.161
  21. M. Y. Song, I. H. Kwon, S. N. Kwon, C. G. Park, S. H. Hong, J. S. Bae and D. R. Mumm, J. Alloys Compd., 415, 266 (2006). https://doi.org/10.1016/j.jallcom.2005.08.002