DOI QR코드

DOI QR Code

Directional Alignment and Printing of One Dimensional Nanomaterials Using the Combination of Microstructure and Hydrodynamic Force

마이크로 구조 및 동유체력을 이용한 나노와이어 미세 정렬 및 프린팅 기법

  • Chung, Yongwon (Nanobio Device Laboratory, School of Electrical & Electronic Engineering, Yonsei University) ;
  • Seo, Jungmok (Nanobio Device Laboratory, School of Electrical & Electronic Engineering, Yonsei University) ;
  • Lee, Sanggeun (Nanobio Device Laboratory, School of Electrical & Electronic Engineering, Yonsei University) ;
  • Kwon, Hyukho (Nanobio Device Laboratory, School of Electrical & Electronic Engineering, Yonsei University) ;
  • Lee, Taeyoon (Nanobio Device Laboratory, School of Electrical & Electronic Engineering, Yonsei University)
  • 정용원 (연세대학교 전기전자공학과) ;
  • 서정목 (연세대학교 전기전자공학과) ;
  • 이상근 (연세대학교 전기전자공학과) ;
  • 권혁호 (연세대학교 전기전자공학과) ;
  • 이태윤 (연세대학교 전기전자공학과)
  • Received : 2013.08.19
  • Accepted : 2013.10.07
  • Published : 2013.10.27

Abstract

The printing of nanomaterials onto certain substrates is one of the key technologies behind high-speed interconnection and high-performance electronic devices. For the printing of next-generation electronic devices, a printing process which can be applied to a flexible substrate is needed. A printing process on a flexible substrate requires a lowtemperature, non-vacuum process due to the physical properties of the substrate. In this study, we obtained well-ordered Ag nanowires using modified gravure printing techniques. Ag nanowires are synthesized by a silver nitrate ($AgNO_3$) reduction process in an ethylene glycol solution. Ag nanowires were well aligned by hydrodynamic force on a micro-engraved Si substrate. With the three-dimensional structure of polydimethylsiloxane (PDMS), which has an inverse morphology relative to the micro-engraved Si substrate, the sub-micron alignment of Ag nanowires is possible. This technique can solve the performance problems associated with conventional organic materials. Also, given that this technique enables large-area printing, it has great applicability not only as a next-generation printing technology but also in a range of other fields.

Keywords

References

  1. S. Hong and S. Myung, Nat. Nanotechnol., 2, 207 (2007). https://doi.org/10.1038/nnano.2007.89
  2. W. Lu and C. M. Lieber, Nat. Mater., 6, 841 (2007). https://doi.org/10.1038/nmat2028
  3. F. Xu, W. Lu and Y. Zhu, ACS Nano, 5, 672 (2011). https://doi.org/10.1021/nn103189z
  4. Y. Sun and J. A. Rogers, Nano Lett., 4, 1953 (2004). https://doi.org/10.1021/nl048835l
  5. M. C. McAlpine, H. Ahmad, D. Wang and J. R. Heath, Nat. Mater., 6, 379 (2007). https://doi.org/10.1038/nmat1891
  6. A. J. Baca, J. H. Ahn, Y. Sun, M. A. Meitl, E. Menard, H. S. Kim, W. M. Choi, D. H. Kim, Y. Huang and J. A. Rogers, Angew. Chem. Int. Ed., 47, 5524 (2008). https://doi.org/10.1002/anie.200703238
  7. H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu and E. P. Woo, Science, 290, 2123 (2000). https://doi.org/10.1126/science.290.5499.2123
  8. J. Z. Wang, Z. H. Zheng, H. W. Li, W. T. S. Huck and H. Sirringhaus, Nat. Mater., 3, 171 (2004). https://doi.org/10.1038/nmat1073
  9. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim and Y. Yan, Adv. Mater., 15, 353 (2003). https://doi.org/10.1002/adma.200390087
  10. J. Chen, B. J. Wiley and Y. Xia, Langmuir, 23, 4120 (2007). https://doi.org/10.1021/la063193y
  11. J. Hu, T. W. Odom and C. M. Lieber, Acc. Chem. Res., 32, 435 (1999). https://doi.org/10.1021/ar9700365
  12. J. I. Pascual, J. Mendez, J. Gomez-Herrero, A. M. Baro, N. Garcia, U. Landman, W. D. Luedtke, E. N. Bogachek and H.-P. Cheng, Science, 267, 1793 (1995). https://doi.org/10.1126/science.267.5205.1793
  13. Y. Wu, J. Xiang, C. Yang, W. Lu and C. M. Lieber, Nature, 430, 61 (2004). https://doi.org/10.1038/nature02674
  14. T. M. Whitney, J. S. Jiang, P. C. Searson and C. L. Chien, Science, 261, 1316 (1993). https://doi.org/10.1126/science.261.5126.1316
  15. B. Wu, A. Heidelberg, J. J. Bolard, Nat. Mater., 4, 525 (2005). https://doi.org/10.1038/nmat1403
  16. E. C. Walter, K. Ng, M. P. Zach, R. M. Penner and F. Favier, Microelectron. Eng., 61, 555 (2002).
  17. C. J. Murphy, T. K. Sau, A. Gole and C. J. Orendorff, MRS Bull., 30, 349 (2005). https://doi.org/10.1557/mrs2005.97
  18. K. E. Korte, S. E. Skrabalak and Y. Xia, J. Mater. Chem., 18, 437 (2008). https://doi.org/10.1039/b714072j
  19. C. T. Campbell, Surf. Sci., 157, 43 (1985). https://doi.org/10.1016/0039-6028(85)90634-X
  20. F. B. de Mongeot, A. Cupilillo, V. Valbusa and M. Rocca, Chem. Phys. Lett., 270, 345 (1997). https://doi.org/10.1016/S0009-2614(97)00381-3
  21. J. M. Seo, H. I. Lee, S. A. Lee, T. I. Lee, J. M. Myoung and T. Y. Lee, Small, 8, 1614 (2012). https://doi.org/10.1002/smll.201102367
  22. R. G. Picknett and R. Bexon, J. Colloid Interface Sci., 61, 336 (1977). https://doi.org/10.1016/0021-9797(77)90396-4
  23. H. Z. Yu, D. M. Soolaman, A. W. Rowe and J. T. Banks, ChemPhysChem., 5, 1035 (2004). https://doi.org/10.1002/cphc.200301042