DOI QR코드

DOI QR Code

Äspö 원형 처분장에 대한 열-수리-역학적 모델링 연구: 열적 거동 해석

Thermal-hydro-mechanical Modelling for an Äspö prototype repository: analysis of thermal behavior

  • 이재완 (한국원자력연구원 방사성폐기물 처분연구부) ;
  • ;
  • 최희주 (한국원자력연구원 방사성폐기물 처분연구부)
  • 투고 : 2013.08.16
  • 심사 : 2013.10.17
  • 발행 : 2013.10.31

초록

고준위폐기물처분장에 대한 열-수리-역학적 거동 모델링은 처분장의 성능 및 안전성 평가를 위해서 선행되어야 할 중요한 연구과제이다. 본 연구에서는 $\ddot{A}$sp$\ddot{o}$ 원형처분장의 열적 거동을 해석하고, 현장 실험데이터와의 비교를 통해 모델 계산결과의 타당성을 검증하였다. 모델 시뮬레이션에서는 처분공과 처분터널 및 그 주변 암반에 대한 온도분포를 분석하였다. 현장 실험데이터와의 비교는 처분공 DH-6를 대상으로 수행하였다. 그 결과 모델 계산치는 측정위치에 따라 실험치 보다 약 2-$5^{\circ}C$ 정도 높은 온도값을 보였으나, 온도변이 곡선은 비슷한 패턴을 보여 주었다. 실험치와 모델 계산치의 이러한 차이는 모델에 의한 열적거동 해석에서 암반을 제외한 완충재, 벤토나이트 펠렛, 뒷채움재 내의 수리학적 및 역학적 거동을 고려하지 않았기 때문으로 판단되었다.

Thermal-hydro-mechanical (THM) modeling is a critical R&D issue in the performance and safety assessment of a high-level waste repository. With an $\ddot{A}$sp$\ddot{o}$ prototype repository, its thermal behavior was analyzed and then compared with in-situ experimental data for its validation. A model simulation was used to calculate the temperature distributions in the deposition holes, deposition tunnel, and surrounding host rock. A comparison of the simulation results with the experimental data was made for deposition hole DH-6, which showed that there was a temperature difference of $2{\sim}5^{\circ}C$ depending on the location of the measuring points, but there was a similar trend in the evolution curves of temperature as a function of time. It was expected that the coupled modeling of the thermal behavior with the hydro-mechanical behavior in the buffer and backfill of the $\ddot{A}$sp$\ddot{o}$ prototype repository would give a better agreement between the experimental and model calculation results.

키워드

참고문헌

  1. 최희주 외, 2008, 한국형 고준위폐기물 처분시스템. 한국원자력연구원, KAERI/TR-3563/2008.
  2. Andersson, C., Barcena, I., Bono, N., Boergesson, L., Cleall, P., Forsmark, T., Gunnarsson, D., Johannesson, L.E., Ledesma, A., Liedtke, L., Luukkonen, A., Pedersen, K., Puigdomenech, I., Pusch, R., Rhen, I., Rothfuchs, T., Sanden, T., Sineriz, J.L., Sugita, Y., Svemar, C., Thomas, H., 2005, Full-scale testing of the KBS-3V concept for the geological disposal of high-level radioactive waste, prototype repository. Final report, EUR 21924.
  3. Cho, W.J., Lee, J.O., Choi, H.J., 2012, Radionuclide migration through an unsaturated clay buffer under thermal and hydraulic gradients for a nuclear waste repository. Annals of Nuclear Energy 50, pp. 71-81. https://doi.org/10.1016/j.anucene.2012.07.010
  4. COMSOL. 2011. COMSOL Multiphysics User's and Reference Guides. Version 4.2a.
  5. JNC, 2000, H12 project to establish technical basis for HLW disposal in Japan, Support Report 2. Japan Nuclear Cycle Development Institute.
  6. Lee, J.O., Park, J.H., Cho, W.J., 2008, Engineering-scale test on the thermal-hydro-mechanical behaviors in the clay barrier of a HLW repository. Annals of Nuclear Energy 35, pp. 1386-1396. https://doi.org/10.1016/j.anucene.2008.01.019
  7. Svensk Kambranslehantering AB (SKB), 2010, Design and production of the KBS-3 repository. SKB TR-10-12.
  8. Simmons, G.R. and Baumgartner, P., 1994, The disposal of Canada's nuclear fuel waste: engineering for a disposal facility. AECL-10715, COG-93-5, Atomic Energy of Canada Limited.
  9. SKB, 1995, Template for safety report with descriptive example. TR 96-05, Swedish Nuclear Fuel and Waste Management Company.
  10. Vieno, T. and Nordman, H., 1999, Safety assessment of spent fuel disposal in Hastholmen, Kivetty, Olkiluoto and Romuvaara. TILA-99, POSIVA 99-07, Posiva Oy.

피인용 문헌

  1. R&D Review on the Gap Fill of an Engineered Barrier for an HLW Repository vol.24, pp.6, 2014, https://doi.org/10.7474/TUS.2014.24.6.405