DOI QR코드

DOI QR Code

Study on Accelerated Life Testing of Swing Reduction Gear Box for Hybrid Excavator

하이브리드 굴삭기용 선회감속기의 가속수명시험에 관한 연구

  • Park, Jong Won (Reliability Assessment Center, Korea Institute of Machinery & Materials) ;
  • Choi, Byung Oh (Reliability Assessment Center, Korea Institute of Machinery & Materials) ;
  • Kim, Kyeong Keun (Doosan Institute of Technology)
  • 박종원 (한국기계연구원 신뢰성평가센터) ;
  • 최병오 (한국기계연구원 신뢰성평가센터) ;
  • 김경근 ((주)두산인프라코어 기술원)
  • Received : 2012.12.28
  • Accepted : 2013.09.25
  • Published : 2013.11.01

Abstract

The swing motion drive unit of a hybrid excavator is composed of an electrical motor instead of a hydraulic motor that is used in hydraulic excavators. The method to assess and guarantee the reliability of a hybrid excavator should consider combining the mechanical and the electrical failure mode effects. In particular, the swing reduction gear set of a hybrid excavator is operated under severe outdoor conditions; therefore, an accelerated life test, which is based on field operating condition, should be conducted for the newly developed reduction gear set. In this study, various qualitative methods for reliability engineering, such as FMMA, FMECA, FTA, and QFD, were used to develop the accelerated life test method for the swing drive reduction gear set for the hybrid excavator.

하이브리드 굴삭기는 기존 굴삭기와 달리 선회구동계에 유압모터를 대신하여 선회전동기를 사용하고 있다. 하이브리드 굴삭기의 신뢰성을 평가하고 보증하기 위해서는 기계와 전기적인 고장모드가 조합되어 고려되어야 한다. 특히, 하이브리드 굴삭기용 선회감속기는 가혹한 실외환경에서 운용되므로 시작품에 대한 현장작동조건을 고려한 가속수명시험이 수행되어야 한다. 본 연구에서는 선회구동계 중선회감속기에 대한 가속수명시험 기법의 개발을 위하여 FMMA, FMAECA, FTA 및 QFD와 같은 정성적 신뢰성기법을 활용하였고, 개발된 가속조건에 의한 수명시험결과를 유분석 기법 등을 활용 분석하여 평가대상 시료가 목표 신뢰도를 만족함을 확인하였다.

Keywords

References

  1. Park, J. W., Lee, K. W. and Kim, H. E., 2011, "Development of Reliability Test Method for Hybrid Excavator," KSME Spring Conference in Jeju, pp. 95-96.
  2. Dimitri Kececioglu, Ph. D., P. E., 1993, Reliability and Life Testing handbook, Vol. 1, Prentice Hall PTR. New Jersey, pp. 1-104.
  3. Tyrone, L. J., 2007, Handbook of Reliability Prediction Procedures for Mechanical Equipment, Naval Surface Warfare Center, West Bethesda, pp. 14-1-22-14.
  4. Verhoeve, C. W. G. and Frumau, C. F. A., 1997, Reliability Testing of Ac-module Inverters, European Photovoltaic Solar Energy Conference.
  5. Sawyer, E. and Kampen, T. V., 2008, Reliability Consideration Inverters/DC Link Capacitor Using PP Film and $105{^{\circ}C}$ Engine Coolant, IMAPS.
  6. Li, Y., Billington, S., Zhang, C., Kurfess, T., Danyluk, S., and Liang, S., 1999, "Dynamic Prognostic Prediction of Defect Propagation on Rolling Element Bearings," Trans. Journal of Tribology, Vol. 42, No. 2, pp. 385-392. https://doi.org/10.1080/10402009908982232
  7. Jones, A. B., 1960, "A General Theory for Elastically Constrained Ball and Radial Roller Bearings Under Arbitrary Load and Speed Conditions," Trans. of ASME., 82, pp. 309-320. https://doi.org/10.1115/1.3662587
  8. Filetti, E. G. and Rumbarger, J. H., 1970, "A General Method for Predicting the Influence of Structural Support Upon Rolling Bearing Performance," Trans. of ASME., 921, pp. 121-128.

Cited by

  1. Design of a Torque Application Device in Test Rig for a Wind Turbine Gearbox vol.39, pp.5, 2015, https://doi.org/10.3795/KSME-A.2015.39.5.507
  2. An experimental study on the effect of carrier pinhole position errors on planet gear load sharing vol.17, pp.10, 2016, https://doi.org/10.1007/s12541-016-0155-0