DOI QR코드

DOI QR Code

고순도 수소 생산을 위한 CO 선택적 산화 반응용 Pt 촉매 연구

A Study on Preferential CO Oxidation over Supported Pt Catalysts to Produce High Purity Hydrogen

  • Jeon, Kyung-Won (Department of Environmental Engineering, Yonsei University) ;
  • Jeong, Dae-Woon (Department of Environmental Engineering, Yonsei University) ;
  • Jang, Won-Jun (Department of Environmental Engineering, Yonsei University) ;
  • Na, Hyun-Suk (Department of Environmental Engineering, Yonsei University) ;
  • Roh, Hyun-Seog (Department of Environmental Engineering, Yonsei University)
  • 투고 : 2013.09.25
  • 심사 : 2013.10.31
  • 발행 : 2013.10.31

초록

To develop preferential CO oxidation reaction (PROX) catalyst for small scale hydrogen generation system, supported Pt catalysts have been applied for the target reaction. The supports were systematically changed to optimize supported Pt catalysts. $Pt/Al_2O_3$ catalyst showed the highest CO conversion among the catalysts tested in this study. This is due to easier reducibility, the highest dispersion, and smallest particle diameter of $Pt/Al_2O_3$. It has been found that the catalytic performance of supported Pt catalysts for PROX depends strongly on the reduction property and depends partly on the Pt dispersion of supported Pt catalysts. Thus, $Pt/Al_2O_3$ can be a promising catalyst for PROX for small scale hydrogen generation system.

키워드

참고문헌

  1. D.-W. Jeong, J.-O. Shim, W.-J. Jang and H.-S. Roh, "A Study on Pt-Na/Ce$O_2$ Catalysts for Single Stage Water Gas Shift Reaction", Trans. of the Korean Hydrogen and New Energy Society, Vol. 23, No. 2, pp. 111-116. https://doi.org/10.7316/KHNES.2012.23.2.111
  2. H.-S. Roh, H. S. Potdar, K.-W. Jun, S. Y. Han, and J.-W. Kim, "Low temperature selective CO oxidation in excess of $H_2$ over Pt/Ce-Zr$O_2$ catalysts", Catalysis Letters, Vol. 93, No. 3-4, 2004, pp. 203-207. https://doi.org/10.1023/B:CATL.0000017077.38760.1f
  3. K. H. Kim, K. Y. Koo, U. H. Jung, and W. L. Yoon, "Preferential CO Oxidation over Ce-Promoted Pt/ ${\gamma}$-$Al_2O_3$ Catalyst", Trans. of the Korean Hydrogen and New Energy Society, Vol. 23, No. 6, pp. 640-646. https://doi.org/10.7316/KHNES.2012.23.6.640
  4. E. D. Park, D. H. Lee, and H. C. Lee, "Recent progress in selective CO removal in a $H_2$-rich stream", Catalysis Today, Vol. 139, No. 4, 2009, pp. 280-290. https://doi.org/10.1016/j.cattod.2008.06.027
  5. Y.-F. Han, M. J. Kahlich, M. Kinne, and R. J. Behm, "CO removal from realistic methanol reformate via preferential oxidation-performance of a Rh/MgO catalyst and comparison to Ru/${\gamma}$ -$Al_2O_3$, and Pt/${\gamma}$-$Al_2O_3$", Applied Catalysis B: Environmental, Vol. 50, No. 4, 2004, pp. 209-218. https://doi.org/10.1016/j.apcatb.2003.10.017
  6. N. Bion, F. Epron, M. Moreno, F. Marino, and D. Duprez, "Preferential Oxidation of Carbon Monoxide in the Presence of Hydrogen (PROX) over Noble Metals and Transition Metal Oxides: Advantages and Drawbacks", Topics in Catalysis, Vol. 51, No. 1-4, 2008, pp. 76-88. https://doi.org/10.1007/s11244-008-9116-x
  7. F. Marino, C. Descorme, and D. Duprez, "Noble metal catalysts for the preferential oxidation of carbon monoxide in the presence of hydrogen (PROX)", Applied Catalysis B: Environmental, Vol. 54, No. 1, 2004, pp. 59-66. https://doi.org/10.1016/j.apcatb.2004.06.008
  8. R. Padilla, M. Benito, L. Rodriguez, A. Serrano-Lotina, and L. Daza, "Platinum supported catalysts for carbon monoxide preferential oxidation: Study of support influence", Journal of Power Sources, Vol. 192, No. 1, 2009, pp. 114-119. https://doi.org/10.1016/j.jpowsour.2008.12.157
  9. H.-S. Roh, D.-W. Jeong, K.-S. Kim, I.-H. Eum, K. Y. Koo, and W. L. Yoon, "Single Stage Water-Gas Shift Reaction Over Supported Pt Catalysts", Catalysis Letters, Vol. 141, No. 1, 2011, pp. 95-99. https://doi.org/10.1007/s10562-010-0480-3
  10. Z. Wu, H. Zhu, Z. Qin, H. Wang, J. Ding, L. Huang, and J. Wang, "CO preferential oxidation in $H_2$-rich stream over a CuO/Ce$O_2$ catalyst with high $H_2$O and C$O_2$ tolerance", Fuel, Vol. 104, 2013, pp. 41-45. https://doi.org/10.1016/j.fuel.2010.03.001
  11. P. Panagiotopoulou, J. Papavasiliou, G. Avgouropoulos, T. Ioannides, and D. I. Kondarides, "Watergas shift activity of doped Pt/Ce$O_2$ catalysts" Chemical Engineering Journal, Vol. 134, No. 1-3, 2007, pp. 16-22. https://doi.org/10.1016/j.cej.2007.03.054
  12. C. P. Hwang, and C. T. Yeh, "Platinum-oxide species formed by oxidation of platinum crystallites supported on alumina", Journal of Molecular Catalysis A: Chemical, Vol. 112, No. 2, 1996, pp. 295-302. https://doi.org/10.1016/1381-1169(96)00127-6
  13. Y. Denkwitz, B. Schumacher, G. Kučerova, and R. J. Behm, "Activity, stability, and deactivation behavior of supported Au/Ti$O_2$ catalysts in the CO oxidation and preferential CO oxidation reaction at elevated temperatures", Journal of Catalysis, Vol. 267, No. 1, 2009, pp. 78-88. https://doi.org/10.1016/j.jcat.2009.07.018
  14. C. Pedrero, T. Waku, and E. Iglesia, "Oxidation of CO in $H_2$-CO mixtures catalyze by platinum: alkali effects on rates and selectivity", Journal of Catalysis, Vol. 233, No. 1, 2005, pp. 242-255 https://doi.org/10.1016/j.jcat.2005.04.005
  15. E. Moretti, M. Lenarda, P. Riello, L. Storaro, A. Talon, R. Frattini, A. Reyes-Carmona, A. Jimenez-Lopez, and E. Rodriguez-Castellon "Influence of synthesis parameters on the performance of $CeO_2$-CuO and $CeO_2$-$ZrO_2$-CuO systems in the catalytic oxidation of CO in excess of hydrogen", Applied Catalysis B: Environmental, Vol. 129, 2013, pp. 556-565. https://doi.org/10.1016/j.apcatb.2012.10.009

피인용 문헌

  1. A Study on Cu Based Catalysts for Water Gas Shift Reaction to Produce Hydrogen from Waste-Derived Synthesis Gas vol.25, pp.3, 2014, https://doi.org/10.7316/KHNES.2014.25.3.227