DOI QR코드

DOI QR Code

Thermoplastic Polyurethane (TPU)/Ethylene-Propylene-Diene Monomer Rubber (EPDM) and TPU/Polybutadiene Rubber (BR) Blends for the Application of Footwear Outsole Materials

신발겉창 재료용 열가소성 폴리우레탄 (TPU)/에틸렌-프로필렌-디엔 고무와 TPU/부타디엔 고무 블렌드

  • Kim, Ji-Hoo (Division of Energy and Bio Engineering, Dongseo University) ;
  • Kim, Gue-Hyun (Division of Energy and Bio Engineering, Dongseo University)
  • 김지후 (동서대학교 에너지 생명공학부) ;
  • 김규현 (동서대학교 에너지 생명공학부)
  • Received : 2013.05.28
  • Accepted : 2013.06.10
  • Published : 2013.09.30

Abstract

The main objective of this study is to improve abrasion resistance and wet slip resistance of thermoplastic polyurethane (TPU) by blending with ethylene-propylene-diene monomer rubber (EPDM) or polybutadiene rubber (BR) for the application of the footwear outsole materials. With addition of 10 wt% of EPDM or BR, TPU/EPDM and TPU/BR blends exhibited higher NBS abrasion resistance, tensile properties and wet slip resistance than TPU. However, with further increasing content of EPDM and BR, abrasion resistance and tensile properties of the blends decreased. Improvement in abrasion resistance and tensile properties with 10 wt% of addition of EPDM or BR may be due to better microphase separation of TPU.

본 연구의 주요 목적은 신발 겉창 재료로 사용하기 위하여 열가소성 폴리우레탄 (TPU)의 내마모성과 습윤시의 내슬립성을 에틸렌-프로필렌-디엔 고무 (EPDM) 또는 폴리부타디엔 고무 (BR)를 블렌드하여 향상시키는 것이다. 10 wt%의 EPDM 또는 BR이 TPU에 투입되었을 때 TPU/EPDM과 TPU/BR 블렌드는 TPU보다 우수한 NBS 내마모도, 인장 물성 그리고 습윤 내슬립성을 보였다. 10 wt% 이상 투입될 때는 내마모도와 인장 물성 모두 감소하였다. 10 wt% 투입시의 내마모도와 인장물성 상승은 TPU의 상분리도 증가에 기인하는 것으로 보인다.

Keywords

References

  1. P. Potschke, K. Wallheinke, H. Fritsche, and H. Stutz, "Morphology and Properties of Blends with Different Thermoplastic Polyurethanes and Polyolefins", J. Appl. Polym. Sci., 64, 749 (1997). https://doi.org/10.1002/(SICI)1097-4628(19970425)64:4<749::AID-APP14>3.0.CO;2-P
  2. E. G. Bajsic, I. Smit, and M. Leskovac, "Blends of Thermoplastic Polyurethane and Polypropylene. I. Mechanical and Phase Behavior", J. Appl. Polym. Sci., 104, 3980 (2007). https://doi.org/10.1002/app.26222
  3. E. G. Bajsic, A. Pustak, I. Smit, and M. Leskovac, "Blends of Thermoplastic Polyurethane and Polypropylene. II. Thermal and Morphological Behavior", J. Appl. Polym. Sci., 117, 1378 (2010).
  4. Y. Di, M. Kang, Y. Zhao, S. Yan, and X. Wang, "Morphology and Mechanical Properties of Blends of Thermoplastic Polyurethane and Polyolefins" J. Appl. Polym. Sci., 99, 875 (2006). https://doi.org/10.1002/app.22809
  5. G. T. Lim, M. H. Ju, D.-H. Kim, K. C. Song, and S.-U. Kim, "Morphology and Properties of PP/PU Blends Prepared by Compositional Quenching" Elastomer, 36, 177 (2001).
  6. D. J. T. Hill, M. I. Killeen, J. H. O'Donnell, P. J. Pomery, D. ST. John, and A. K. Whittaker, "Development of Wear-Resistant Thermoplastic Polyurethanes by Blending with Poly(dimethyl siloxane). I. Physical Properties" J. Appl. Polym. Sci., 61, 1757 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960906)61:10<1757::AID-APP16>3.0.CO;2-#
  7. T. Bremner, D. J. T. Hill, M. I. Killeen, J. H. O'Donnell, P. J. Pomery, D. ST. John, and A. K. Whittaker, "Development of Wear-Resistant Thermoplastic Polyurethanes by Blending with Poly(dimethyl siloxane). II. A Packing Model" J. Appl. Polym. Sci., 65, 939 (1997). https://doi.org/10.1002/(SICI)1097-4628(19970801)65:5<939::AID-APP12>3.0.CO;2-N
  8. X. Wang, and X. Luo, "A Polymer Network Based on Thermoplastic Polyurethane and Ethylene-propylene-diene Elastomer via melt blending: Morphology, Mechanical Properties, and Rheology" Eur. Polym. J., 40, 2391 (2004). https://doi.org/10.1016/j.eurpolymj.2004.06.008
  9. S. N. Ratner, I. I. Farberoua, O. V. Radyukeuich, and E. G. Lure, "Correlation between Wear Resistance of Plastics and Other Mechanical Properties" Soviet Plastics, 7, 37 (1964).
  10. B. Briscoe, "Wear of Polymers: an Essay on Fundamental Aspects" Tribol. Int. 14, 231 (1981). https://doi.org/10.1016/0301-679X(81)90050-5
  11. J. I. Mardel, A. J. Hill, K. R. Chynoweth, M. E. Smith, C. H. J. Johnson, and T. J. Bastow, "An Investigation of the Morpholoy-Wear Performance Relationships in Polyetherpolyuretane Thermoplastic Elastomers" Wear, 162, 645 (1993).
  12. R. A. Assink, and G. L. Wilkes, "Study of Domain Structure in Linear and Crosslinked Polyurethanes Using Pulsed Proton NMR" J. Appl. Polym. Sci., 26, 3689 (1981). https://doi.org/10.1002/app.1981.070261115
  13. J. A. Miller, S. B. Lin, K. K. S. Hwang, K. S. Wu, P. E. Gibson, and S. L. Cooper, "Properties of Polyether-Polyurethane Block Copolymers: Effects of Hard Segment Length Distribution" Macromolecules, 18, 32, (1985). https://doi.org/10.1021/ma00143a005
  14. C. G. Seefried Jr, J. V. Koleske, and F. E. Critchfield, "Thermoplastic Urethane Elastomers. I. Effects of Soft-segment Variations" J. Appl. Polym. Sci., 19, 2493, (1975). https://doi.org/10.1002/app.1975.070190912
  15. Y. Li, T. Gao, J. Liu, K. Linliu, C. R. Desper, and B. Chu, "Multiphase Structure of a Segmented Polyurethane: Effects of Temperature and Annealing" Macromolecules, 25, 7365, (1992). https://doi.org/10.1021/ma00052a045