DOI QR코드

DOI QR Code

Physical Properties of the Silica-Reinforced Tire Tread Compounds by the Increased Amount of Vulcanization Agents

가교제 증량이 트레드용 실리카 컴파운드의 물성에 미치는 영향

  • Seo, Byeongho (Department of Chemical Engineering, Pusan National University) ;
  • Kim, Ki-Hyun (Department of Chemical Engineering, Pusan National University) ;
  • Kim, Wonho (Department of Chemical Engineering, Pusan National University)
  • Received : 2013.06.03
  • Accepted : 2013.07.22
  • Published : 2013.09.30

Abstract

In this study, effect of different amounts of sulfur and vulcanization accelerators in the acrylonitrile styrene-butadiene rubber (AN-SBR)/silica compounds on the properties of tire tread compound were studied. As a result, cure rate and degree of cross-linking of the compounds were increased due to enhanced cross-linking reactivity by the increased amounts of sulfur and vulcanization accelerators. Also, abrasion resistance and the mechanical properties such as hardness and modulus of the compounds were improved by enhanced degree of cross-linking of the compounds. For the dynamic properties, tan ${\delta}$ value at $0^{\circ}C$ was increased due to the increase of glass transition temperature ($T_g$) by enhanced degree of cross-linking of the compound, and tan ${\delta}$ value at $60^{\circ}C$ was decreased. Initial cure time ($t_1$) showed the linear relationship with tan ${\delta}$ value at $60^{\circ}C$. This result is attributed that reduced initial cure time ($t_1$) of compounds by applying increased amount of curatives can form cross-linking in early stage of vulcanization that may suppress development of filler network. This result is verified by observation on the surface of annealed compounds using AFM (atomic force microscopy). Consequently, decreased initial cure time is considered a very important parameter to reduce tan ${\delta}$ at $60^{\circ}C$ through reduced re-agglomeration of silica particles.

본 연구는 황과 가교 촉진제의 함량이 달리 적용된 acrylonitrile styrene-butadiene rubber (AN-SBR)/silica 컴파운드가 타이어 트레드 컴파운드의 특성에 미치는 영향에 대해 연구하였다. 실험 결과, 가교제 및 가교촉진제의 함량이 증가할수록 가교 반응성이 증대되어 가교속도 및 컴파운드의 가교도가 상승하였다. 또한 내마모 특성 뿐만 아니라 경도, 모듈러스와 같은 컴파운드의 기계적 특성은 높은 가교도에 기인하여 향상되었다. 동적 점탄 특성에서는 가교도의 증가와 함께 유리전이온도 ($T_g$)가 상승하여 $0^{\circ}C$ 영역에서의 tan ${\delta}$ 값이 향상되었고, $60^{\circ}C$ 영역에서의 tan ${\delta}$ 값이 감소되었다. 초기 가교 속도 ($t_1$)는 $60^{\circ}C$의 tan ${\delta}$ 값과 선형적인 관계를 나타내었다. 이는 가교제의 증량으로 초기 가교 속도 ($t_1$)가 빨라져 조기에 가교가 시작됨으로써 filler network 의 발달을 억제시킨 결과에 따른 것으로 판단된다. 이러한 결과는 AFM (atomic force microscopy)을 통하여 열처리된 컴파운드의 표면 관찰에서도 확인할 수 있었다. 따라서, 빠른 초기 가황 반응에 기인한 실리카의 re-agglomeration 감소는 $60^{\circ}C$에서의 tan ${\delta}$를 결정하는 매우 중요한 변수임을 알 수 있다.

Keywords

References

  1. J. E. Mark, "Experimental Determinations of Crosslink Densities", Rubber Chem. Technol., 55, 762 (1982). https://doi.org/10.5254/1.3535902
  2. N. Sombatsompop, "Analysis of Cure Characteristics on Cross-link Density and Viscoelastic Properties of Natural Rubber", Polym.-Plast. Technol. Eng., 37, 333 (1998). https://doi.org/10.1080/03602559808006932
  3. N. Sombatsompop, "Practical Use of the Mooney-Rivlin Equation for Determination of Degree of Crosslinking of Swollen NR Vulcanisates", J. Sci. Soc. Thailand, 24, 199 (1998). https://doi.org/10.2306/scienceasia1513-1874.1998.24.199
  4. M. J. Wang, "Effect of Polymer-Filler and Filler-Filler Interactions on Dynamic Properties of Filled Vulcanizates", Rubber Chem. Technol., 71, 520 (1998). https://doi.org/10.5254/1.3538492
  5. C. Wrana, U. Eisele, and S. Kelbch, "Measurement and Molecular Modeling of Rolling Resistance in Tire Treads", Kaut. Gummil. Kunst., 53, 126 (2000).
  6. R. Hagen, L. Salmen, and B. Stenberg, "Effects of the Type of Crosslink on Viscoelastic Properties of Natural Rubber," J. Polym. Sci. B, 34, 1997 (1996). https://doi.org/10.1002/(SICI)1099-0488(19960915)34:12<1997::AID-POLB5>3.0.CO;2-N
  7. R. L. Fan, Y. Zhang, F. Li, Y. X. Zhang, K. Sun, and Y. Z. Fan, "Effect of High-Temperature Curing on the Crosslink Structures and Dynamic Mechanical Properties of Gum and N330-Filled Natural Rubber Vulcanizates", Polym. Test., 20, 925 (2001). https://doi.org/10.1016/S0142-9418(01)00035-6
  8. N. C. Park and S. Lee, "Studies on the Crosslinking Density and Reinforcement of Rubber Compounds by Cure System", Elast. Compos., 33, 315 (1998).
  9. B. H. Seo, H. J. Kim, H. J. Paik, G. H. Kwag, and W. Kim, "Characterization of AN-SBR/Silica Compound with Acrylonitrile as a Polar Group in SBR", Macromol. Res., 21, 738 (2013). https://doi.org/10.1007/s13233-013-1091-9
  10. N. Suzuki, M. Ito, and S. Ono, "Effects of Rubber/Filler Interactions on the Structural Development and Mechanical Properties of NBR/Silica Composites", J. Appl. Polym. Sci., 95, 74 (2005). https://doi.org/10.1002/app.20800
  11. L. Mullins, "Determination of Degree of Crosslinking in Natural Rubber Vulcanizates. Part III", J. Appl. Polym. Sci., 2, 1 (1959). https://doi.org/10.1002/app.1959.070020401
  12. B. B. Boonstra, "Role of Particulate Fillers in Elastomer Reinforcement: A Review", Polymer, 20, 691 (1979). https://doi.org/10.1016/0032-3861(79)90243-X
  13. N. Rattanasom, "Reinforcement of Natural Rubber with Silica/Carbon Black Hybrid Filler", Polym. Test., 26, 369 (2007). https://doi.org/10.1016/j.polymertesting.2006.12.003
  14. S. S. Choi, "Improvement of Properties of Silica-Filled Natural Rubber Compounds Using Polychloroprene", J. Appl. Polym. Sci., 83, 2609 (2002). https://doi.org/10.1002/app.10201
  15. J. Rieger, "The Glass Transition Temperature $T_g$ of Polymers-Comparison of the Values from Differential Thermal Analysis (DTA, DSC) and Dynamic Mechanical Measurements (Torsion Pendulum)", Polym. Test., 20, 199 (2001). https://doi.org/10.1016/S0142-9418(00)00023-4
  16. M. Watanabe, N. Ogata, "Ionic Conductivity of Polymer Electrolytes and Future Applications", J. Appl. Polym. Sci., 20, 181 (1988).
  17. C. M. Roland, "Glass Transition in Rubbery Materials", Rubber Chem. Technol., 85, 313 (2012). https://doi.org/10.5254/rct.12.87987
  18. B. J. Lee, K. W. Lim, S. C. Ji, K. Y. Jung, and T. J. Kim, "Advanced Synthetic Technology for High Performance Energy Tire Tread Rubber", Elast. Compos., 44, 232 (2009).
  19. G. G. A. Bohm and M. N. Nguyen, "Flocculation of Carbon Black in Filled Rubber Compounds. I. Flocculation Occurring in Unvulcanized Compounds During Annealing at Elevated Temperatures", J. Appl. Polym. Sci. 55, 1041 (1995). https://doi.org/10.1002/app.1995.070550707
  20. S. Mihara, R. N. Datta, and J. W. M. Noordermeer, "Flocculation in Silica Reinforced Rubber Compounds", Rubber Chem. Technol., 82, 524 (2009). https://doi.org/10.5254/1.3548262
  21. C. G. Robertson, C. J. Lin, R. B. Bogoslovov, M. Rakaitis, P. Sadhukhan, J. D. Quinn, C. M. Roland, "Flocculation, Reinforcement, and Glass Transition Effects in Silica-Filled Styrene-Butadiene Rubber", Rubber Chem. Technol., 84, 507 (2011). https://doi.org/10.5254/1.3601885

Cited by

  1. Mechanical Properties of Natural Rubber Compounds Reinforced with Milled Carbon Fibers and Carbon Blacks vol.53, pp.2, 2016, https://doi.org/10.12772/TSE.2016.53.091