DOI QR코드

DOI QR Code

Mechanical Properties of Polyurethane Foam Prepared from Prepolymer with Resin Premix

Prepolymer와 Resin Premix로 부터 제조된 Polyurethane Foam의 기계적 성질

  • 김태성 (태광산업(주) 중앙연구소) ;
  • 박찬영 (부경대학교 고분자공학과)
  • Received : 2013.08.05
  • Accepted : 2013.08.26
  • Published : 2013.09.30

Abstract

Polyester type polyurethane foam has low hydrolysis resistance. It was overcome with addition of acrylic polyol by quasi prepolymer method. Tensile strength and hardness of polyurethane foam contained acrylic polyol was increased with increasing of acrylic polyol contents. But split tear strength and tear strength was slightly changed. Hydrolysis resistance of polyurethane foam was measured by loss % of tensile strength. It was improved with increasing of acrylic polyol contents from 25.5g to 102g.

polyester형 polyurethane foam은 낮은 내가수분해성을 가지므로 quasi prepolymer법에 의한 acrylic polyol을 사용함으로써 극복될 수 있다. acrylic polyol을 함유한 polyurethane foam은 acrylic polyol 함량이 증가함에 따라 인장강도와 경도가 증가하였다. 하지만 split 인열강도와 인열강도는 약간씩 변화되었다. polyurethane foam의 내가수분해성은 인장강도의 손실 백분율로 측정하였으며 acrylic polyol 함량이 25.5g에서 102g으로 증가함에 따라 향상되었다.

Keywords

References

  1. G. Oertel Polyurethane foams. Munich: Hanser Publishing; (1993).
  2. G. Wood, "The ICI Polyurethanes book", 2nr ed., John Wiley& Sons, New York(1990).
  3. M. Modesti, A. Lorenzetti, "An experimental method for evaluating isocyanate conversion and trimer formation in polyisocyanate-polyurethane foams", Eur. Poly. J., 37, 949 (2001). https://doi.org/10.1016/S0014-3057(00)00209-3
  4. L. Artavia, C. Macosko., Low density cellular plastics, physical basis of behavior. In: N. C. Hilyard, A. Cunningham, editors. London: Chapman and Hall [Chapter 2].
  5. C. Ligourea, M. Cloitrea, C. Chateliera, F. Montia, "Making polyurethane foams from microemulsions", Polymer, 46, 6402 (2005). https://doi.org/10.1016/j.polymer.2005.04.089
  6. M. Saha, M. Kabir, S. Jeelani, "Enhancement in thermal and mechanical properties of polyurethane foam infused with nanoparticles", Mater. Sci. Eng. A, 479, 213 (2008). https://doi.org/10.1016/j.msea.2007.06.060
  7. S. N. Singh, Blowing agents for polyurethane foams. Shropshire, Midlands, UK: Rapra Technology; (2002).
  8. F. Michel, L. Chazeau, J. Cavaille, E. Chabert, "Mechanical properties of high density polyurethane foams: I. Effect of the density", Comp. Sci. Technol., 66, 2700 (2006). https://doi.org/10.1016/j.compscitech.2006.03.009
  9. E. Pellizzi, A. Derieux, J. Lacaillerie, B. Lavedrine, H. Cheradame, "Reinforcement properties of 3-aminopropylmethyldiethoxysilane and N-(2-Aminoethyl)-3-aminopropylmethyldimethoxysilane on polyurethane este foam", Polym. Degrad. Stab., 97, 2340 (2012). https://doi.org/10.1016/j.polymdegradstab.2012.07.031
  10. R. M. Herrington, R.B. Turner In: K.C., Frisch D, Klempner editors. Advances in urethane science and technology, vol. 12. Lancaster, PA: Technomic Pub; (1992).
  11. M. Corcuera, L. Rueda, B. d'Arlas, A. Arbelaiz, C. Marieta, I. Mondragon, and A. Eceiza, "Microstructure and properties of polyurethanes derived from castor oil", Polym. Degrad. Stab., 95, 2175 (2010). https://doi.org/10.1016/j.polymdegradstab.2010.03.001
  12. Lovering E. G. and Laidler K. J. "Thermochemical Studies of Some Alcohol-Isocyanate Reaction, Can. J. Chem., 40, 26 (1962). https://doi.org/10.1139/v62-005
  13. L. J. Gibson, Ashby MF. Cellular solids: structure and properties. Cambridge: Cambridge University Press; (1999).
  14. M. Elwell and A. Ryan, "An FTIR study of reaction kinetics and structure development in model flexible polyurethane foam systems", Polymer, 37(8), 1353 (1996). https://doi.org/10.1016/0032-3861(96)81132-3
  15. G. Biesmans, L. Colman, and R. Vandesande, "The Use of Principal Component Analysis to Classify PDMS Surfactants Used to Make Rigid Polyurethane Foams Based on Their Dynamic Surface Tension Characteristics", J. Colloid Interf. Sci., 199, 140 (1998). https://doi.org/10.1006/jcis.1997.5337
  16. M. J. Krupers, C. F. Bartelink, H. Grunhauer and M. Moller, "Formation of rigid polyurethane foams with semi-fluorinated diblock copolymeric surfactants", Polymer, 39, 2049 (1998). https://doi.org/10.1016/S0032-3861(87)00375-6
  17. ZX. D. Zhang, C. W. Macosko, H. T. Davis, A. D. Nikolov and D. T. Wasan, "Role of Silicone Surfactant in Flexible Polyurethane Foam", J. Colloid Interf. Sci., 215, 270 (1999). https://doi.org/10.1006/jcis.1999.6233
  18. B. D. Kaushiva, S. R. McCartney, G. R. Rossmy and G. L. Wilkes, "Surfactant level influences on structure and properties of flexible slabstock polyurethane foams", Polymer, 41, 285 (2000). https://doi.org/10.1016/S0032-3861(99)00135-4
  19. X. Caoa, L. Leea, T. Widyab, C. Macoskob, "Polyurethane/clay nanocomposites foams: processing, structure and properties", Polymer, 46, 775 (2005). https://doi.org/10.1016/j.polymer.2004.11.028
  20. M. Sonnenschein, R. Prange and, A. Schrock, "Mechanism for compression set of TDI polyurethane foams", Polymer, 48, 616 (2001).
  21. Y. Qian, W. Liu, Y. T. Park and C. Lindsay, "Modification with tertiary amine catalysts improves vermiculite dispersion in polyurethane via in situ intercalative polymerization", Polymer, 53, 5060 (2012). https://doi.org/10.1016/j.polymer.2012.09.008
  22. Q. Zhanga, Y. Shib, X. Zhana and F. Chena, "In situ miniemulsion polymerization for waterborne polyurethanes: Kinetics and modeling of interfacial hydrolysis of isocyanate", Colloid. Surf. A: Physicochem. Eng. Aspects, 393, 17 (2012). https://doi.org/10.1016/j.colsurfa.2011.10.016
  23. X. Gao, B. Zhou, Y. Guo, Y. Zhu, X. Chen, Y. Zheng, W. Gao, X. Ma and Z. Wang, "Synthesis and characterization of well-dispersed polyurethane/$CaCO_3$ nanocomposites", Colloid. Surf. A: Physicochem. Eng. Aspects, 371, 1 (2010). https://doi.org/10.1016/j.colsurfa.2010.08.036